Tag Archives: Nigeria

Artificial Intelligence for Monitoring Elections (AIME)

AIME logo

I published a blog post with the same title a good while back. Here’s what I wrote at the time:

Citizen-based, crowdsourced election observation initiatives are on the rise. Leading election monitoring organizations are also looking to leverage citizen-based reporting to complement their own professional election monitoring efforts. Meanwhile, the information revolution continues apace, with the number of new mobile phone subscriptions up by over 1 billion in just the past 36 months alone. The volume of election-related reports generated by “the crowd” is thus expected to grow significantly in the coming years. But international, national and local election monitoring organizations are completely unprepared to deal with the rise of Big (Election) Data.

I thus introduced a new project to “develop a free and open source platform to automatically filter relevant election reports from the crowd.” I’m pleased to report that my team and I at QCRI have just tested AIME during an actual election for the very first time—the 2015 Nigerian Elections. My QCRI Research Assistant Peter Mosur (co-author of this blog post) collaborated directly with Oludotun Babayemi from Clonehouse Nigeria and Chuks Ojidoh from the Community Life Project & Reclaim Naija to deploy and test the AIME platform.

AIME is a free and open source (experimental) solution that combines crowd-sourcing with Artificial Intelligence to automatically identify tweets of interest during major elections. As organizations engaged in election monitoring well know, there can be a lot chatter on social media as people rally behind their chosen candidates, announce this to the world, ask their friends and family who they will be voting for, and updating others when they have voted while posting about election related incidents they may have witnessed. This can make it rather challenging to find reports relevant to election monitoring groups.

WP1

Election monitors typically monitor instances of violence, election rigging, and voter issues. These incidents are monitored because they reveal problems that arise with the elections. Election monitoring initiatives such as Reclaim Naija & Uzabe also monitor several other type of incidents but for the purposes of testing the AIME platform, we selected three types of events mentioned above. In order to automatically identify tweets related to these events, one must first provide AIME with example tweets. (Of course, if there is no Twitter traffic to begin with, then there won’t be much need for AIME, which is precisely why we developed an SMS extension that can be used with AIME).

So where does the crowdsourcing comes in? Users of AIME can ask the crowd to tag tweets related to election-violence, rigging and voter issues by simply clicking on tagging tweets posted to the AIME platform with the appropriate event type. (Several quality control mechanisms are built in to ensure data quality. Also, one does not need to use crowdsourcing to tag the tweets; this can be done internally as well or instead). What AIME does next is use a technique from Artificial Intelligence (AI) called statistical machine learning to understand patterns in the human-tagged tweets. In other words, it begins to recognize which tweets belong in which category type—violence, rigging and voter issues. AIME will then auto-classify new tweets that are related to these categories (and can auto-classify around 2 millions tweets or text messages per minute).

Screen Shot 2015-04-10 at 8.33.08 AM

Before creating our automatic classifier for the Nigerian Elections, we first needed to collect examples of tweets related to election violence, rigging and voter issues in order to teach AIME. Oludotun Babayemi and Chuks Ojidoh kindly provided the expert local knowledge needed to identify the keywords we should be following on Twitter (using AIME). They graciously gave us many different keywords to use as well as a list of trusted Twitter accounts to follow for election-related messages. (Due to difficulties with AIME, we were not able to use the trusted accounts. In addition, many of the suggested keywords were unusable since words like “aggressive”, “detonate”, and “security” would have resulted in large amount of false positives).

Here is the full list of keywords used by AIME:

Nigeria elections, nigeriadecides, Nigeria decides, INEC, GEJ, Change Nigeria, Nigeria Transformation, President Jonathan, Goodluck Jonathan, Sai Buhari, saibuhari, All progressives congress, Osibanjo, Sambo, Peoples Democratic Party, boko haram, boko, area boys, nigeria2015, votenotfight, GEJwinsit, iwillvoteapc, gmb2015, revoda, thingsmustchange,  and march4buhari   

Out of this list, “NigeriaDecides” was by far the most popular keyword used in the elections. It accounted for over 28,000 Tweets of a batch of 100,000. During the week leading up to the elections, AIME collected roughly 800,000 Tweets. Over the course of the elections and the few days following, the total number of collected Tweets jumped to well over 4 million.

We sampled just a handful of these tweets and manually tagged those related to violence, rigging and other voting issues using AIME. “Violence” was described as “threats, riots, arming, attacks, rumors, lack of security, vandalism, etc.” while “Election Rigging” was described as “Ballot stuffing, issuing invalid ballot papers, voter impersonation, multiple voting, ballot boxes destroyed after counting, bribery, lack of transparency, tampered ballots etc.” Lastly, “Voting Issues” was defined as “Polling station logistics issues, technical issues, people unable to vote, media unable to enter, insufficient staff, lack of voter assistance, inadequate voting materials, underage voters, etc.”

Any tweet that did not fall into these three categories was tagged as “Other” or “Not Related”. Our Election Classifiers were trained with a total of 571 human-tagged tweets which enabled AIME to automatically classify well over 1 million tweets (1,263,654 to be precise). The results in the screenshot below show accurate AIME was at auto-classifying tweets based on the different event types define earlier. AUC is what captures the “overall accuracy” of AIME’s classifiers.

AIME_Nigeria

AIME was rather good at correctly tagging tweets related to “Voting Issues” (98% accuracy) but drastically poor at tagging related to “Election Rigging” (0%). This is not AIME’s fault : ) since it only had 8 examples to learn from. As for “Violence”, the accuracy score was 47%, which is actually surprising given that AIME only had 14 human-tagged examples to learn from. Lastly, AIME did fairly well at auto-classifying unrelated tweets (accuracy of 86%).

Conclusion: this was the first time we tested AIME during an actual election and we’ve learned a lot in the process. The results are not perfect but enough to press on and experiment further with the AIME platform. If you’d like to test AIME yourself (and if you fully recognize that the tool is experimental and still under development, hence not perfect), then feel free to get in touch with me here. We have 2 slots open for testing. In the meantime, big thanks to my RA Peter for spearheading both this deployment and the subsequent research.

Proof: How Crowdsourced Election Monitoring Makes a Difference

My colleagues Catie Bailard & Steven Livingston have just published the results of their empirical study on the impact of citizen-based crowdsourced election monitoring. Readers of iRevolution may recall that my doctoral dissertation analyzed the use of crowdsourcing in repressive environments and specifically during contested elections. This explains my keen interest in the results of my colleagues’ news data-driven study, which suggests that crowdsourcing does have a measurable and positive impact on voter turnout.

Reclaim Naija

Catie and Steven are “interested in digitally enabled collective action initiatives” spearheaded by “nonstate actors, especially in places where the state is incapable of meeting the expectations of democratic governance.” They are particularly interested in measuring the impact of said initiatives. “By leveraging the efficiencies found in small, incremental, digitally enabled contributions (an SMS text, phone call, email or tweet) to a public good (a more transparent election process), crowdsourced elections monitoring constitutes [an] important example of digitally-enabled collective action.” To be sure, “the successful deployment of a crowdsourced elections monitoring initiative can generate information about a specific political process—information that would otherwise be impossible to generate in nations and geographic spaces with limited organizational and administrative capacity.”

To this end, their new study tests for the effects of citizen-based crowdsourced election monitoring efforts on the 2011 Nigerian presidential elections. More specifically, they analyzed close to 30,000 citizen-generated reports of failures, abuses and successes which were publicly crowdsourced and mapped as part of the Reclaim Naija project. Controlling for a number of factors, Catie and Steven find that the number and nature of crowdsourced reports is “significantly correlated with increased voter turnout.”

Reclaim Naija 2

What explains this correlation? The authors “do not argue that this increased turnout is a result of crowdsourced reports increasing citizens’ motivation or desire to vote.” They emphasize that their data does not speak to individual citizen motivations. Instead, Catie and Steven show that “crowdsourced reports provided operationally critical information about the functionality of the elections process to government officials. Specifically, crowdsourced information led to the reallocation of resources to specific polling stations (those found to be in some way defective by information provided by crowdsourced reports) in preparation for the presidential elections.”

(As an aside, this finding is also relevant for crowdsourced crisis mapping efforts in response to natural disasters. In these situations, citizen-generated disaster reports can—and in some cases do—provide humanitarian organizations with operationally critical information on disaster damage and resulting needs).

In sum, “the electoral deficiencies revealed by crowdsourced reports […] provided actionable information to officials that enabled them to reallocate election resources in preparation for the presidential election […]. This strengthened the functionality of those polling stations, thereby increasing the number of votes that could be successfully cast and counted–an argument that is supported by both quantitative and qualitative data brought to bear in this analysis.” Another important finding is that the resulting “higher turnout in the presidential election was of particular benefit to the incumbent candidate.” As Catie and Steven rightly note, “this has important implications for how various actors may choose to utilize the information generated by new [technologies].”

In conclusion, the authors argue that “digital technologies fundamentally change information environments and, by doing so, alter the opportunities and constraints that the political actors face.” This new study is an important contribution to the literature and should be required reading for anyone interested in digitally-enabled, crowdsourced collective action. Of course, the analysis focuses on “just” one case study, which means that the effects identified in Nigeria may not occur in other crowdsourced, election monitoring efforts. But that’s another reason why this study is important—it will no doubt catalyze future research to determine just how generalizable these initial findings are.

bio

See also:

  • Traditional Election Monitoring Versus Crowdsourced Monitoring: Which Has More Impact? [link]
  • Artificial Intelligence for Monitoring Elections (AIME) [link]
  • Automatically Classifying Crowdsourced Election Reports [link]
  • Evolution in Live Mapping: The Egyptian Elections [link]