Category Archives: Humanitarian Technologies

Creating a League of Luxury Yachts for Disaster Response

Yes, you read the title right, and yes, I’m serious. I recently met with the head of the Fiji Red Cross, and while the primary focus of our discussion was the use of aerial robotics (UAVs) for disaster risk reduction and response, the Red Cross head was full of other ideas. He recounted, for example, that many yacht owners had offered their services after Cyclone Winston swept through the South Pacific. They offered the use of their yachts to reach the heavily affected outer islands and to transport doctors, humanitarian assessment teams and relief supplies. When he saw me smiling I told him that a good colleague and I had actually worked on developing this concept in early 2016.

It was particularly insightful when the Red Cross head mentioned how he had really, really wanted to leverage this untapped resource but was simply too over-stretched to coordinate a Luxury Yachts League for Disaster Response. I smiled again because the concept I had worked on last year was specifically geared towards developing those coordination mechanisms and building the necessary skills amongst yacht pilots before the next major disaster.

Fact is, there is no established interface for national or international aid groups to coordinate effectively and efficiently with yacht owners or their crews. The efforts that do exist appear to be more ad hoc or independent. But yacht owners and crews are rarely disaster response experts, which means that are not familiar with humanitarian coordination mechanisms. As a result, they often don’t know how to best plug into or augment ongoing relief efforts. This disconnect prevents organizations like the Fiji Red Cross from taking advantage of logistics solutions offered by yachts. And so yachts remain an untapped resource for humanitarian logistics, specifically in the context of Small Island States and countries with extensive coastlines like India and Chile.

The following is taken from the concept note I co-authored:

“Multimillion dollar yachts and their word-class international crews are not commonly considered as having the potential to play an invaluable humanitarian role in the aftermath of major disasters. This oversight is a massive mistake. Their ability to expertly and rapidly transport doctors, field humanitarians and life-saving goods to disaster-affected communities near coastlines and major rivers should not be underestimated. And yet, this highly skilled expertise and proven technology is consistently overlooked following major disasters.

The main reason for this is simple: an international network of world-class yacht crews has not been catalyzed, coordinated and trained to serve in humanitarian efforts. Such a response could leverage comparative advantages by providing a necessary complement to larger disaster response efforts by governments, international NGOs and the United Nations. A prepared Yachts League could respond more more quickly, avoiding some of the geopolitical hurdles. They would be fully self-financed and self-sufficient.”

What’s more, these yachts could serve as takeoff and landing points for UAVs in order to carry out areal assessments along coastlines in further inland after major disasters. They could also be used to deploy marine robotics to inspect harbors, bridges and other maritime infrastructure. So what are we waiting for? Yacht owners were directly offering their fully equipped yachts and expert crews to the Red Cross in the wake of Cyclone Pam. So lets start with Fiji and build practical coordination mechanisms and provide the necessary training to enable the use of yachts in future disasters in the South Pacific. We can then expand from there with lessons learned and best practices. The key is to work directly with established humanitarian organizations from the start.

Anyone interested in taking the lead on this?

How To Coordinate UAV Deployments During Disasters

My team and I at WeRobotics are partnering with the World Food Program (WFP) to develop practical coordination mechanisms for UAV deployments in collaboration. These will be developed with a range of national & local partners. In this post I want to share the basic coordination protocols we used in the aftermath of Cyclone Pam, a category 5 cyclone that devastated the islands of Vanuatu in 2015. By “we” I mean myself, the World Bank and two UAV companies from Australia (Heliwest) and New Zealand (X-Craft).

The World Bank tasked me with spearheading the UAV response to Cyclone Pam so I recruited the two companies to carry out the aerial surveys. I selected them from a dozen groups that had registered with the Humanitarian UAV Network (UAViators) Global Pilot Roster. When we landed at the international airport in Port Vila, we saw a very common scene. Military cargo aircraft filled with food, water and other relief items. Helicopters were also being chartered to support the relief efforts. And commercial aircrafts like the one that had taken us to Vanuatu were also flying in and out on a daily basis.

We clearly needed to develop coordination mechanisms that would allow us to fly our UAVs in this relatively complex airspace. So within an hour of landing in Port Vila, I organized a joint meeting with the Government of Vanuatu, Air Traffic Control (ATC), World Bank, Australian Defense Force, New Zealand Defense Force and the two UAV companies. By the end of the 1-hour meeting we had agreed on a clear set of coordination protocols that would enable us to fly our UAVs safely in non-segregated airspace. And it wasn’t rocket science.

At 22:00 every night, we would email the Australian Defense Force (ADF) our flight plans for the following day. An example of such a plan is pictured above. By 23:00, the ADF would respond with a yes/no. (They said yes to all our plans). At 23:00, we would email our approved flight plans to controllers at ATC and start programming the UAV flights. We’d get a few hours of sleep and head back when it was still dark to reach the survey sites as early as possible. This was also true for areas near the airport since we could only fly our UAVs between 6am-8am based on the agreed protocols.

Once on site, we’d set up the UAVs and go through our regular check-lists to ensure they were calibrated, tested and ready to fly. Before take off, we would call ATC (we had the mobile phone numbers of 2 ATC operators) and proceed as follows:

“Hello ATC, this is the World Bank UAV Team. We are on site in [name of location] for flight number [x] and ready for takeoff. Do we have your permission?” 

After verbal confirmation, we would launch our UAVs and carry out the aerial survey. We flew below 400 feet (per UAV regulations) and never, ever strayed from our approved flight plan. The Civil Aviation Authority of Vanuatu had given us permission to fly Extended Line of Site, which meant we could fly beyond visual line of site as long as we could keep an eye on general airspace where our UAV was operating. After landing the UAV, we would call ATC back:

“Hello ATC, this is the World Bank UAV Team. We have just landed the UAV in [name of location] and have completed flight number [x]. Thanks.” 

Simple and yet highly effective for the context at hand. We had the mandate, all the right contacts and we everyone followed the coordination protocols. But this is just a subset of protocols required for coordinating UAV flights. There are other components such as data-sharing workflows that need to be in place well before a disaster. What’s more, in the case of Cyclone Pam, we were working with only two professional UAV teams in a Small Island State. Just weeks after Cyclone Pam, a devastating 8.0 magnitude earthquake struck Nepal. The situation there was a lot more complex with at least 15 UAV teams self-deploying to the country.

The UN Office for the Coordination of Humanitarian Affairs (OCHA) in Nepal formally asked me to coordinate these teams, which turned out to be quite the nightmare. The Civil Aviation Authority of Nepal (CAAN) did not have the capacity or expertise to partner with us in coordinating UAV flights. Nor did UNDAC. Many of the self-deployed UAV teams had never worked in disaster response before let alone in a developing country. So they had no idea how to actually support  or plug into formal relief efforts.

While most of UAV teams blamed connectivity issues (slow and intermittent email/phone access) for being unable to follow our coordination efforts online, several of them had no problem live-tweeting pictures of their UAVs. So I teamed up with LinkedIn For Good to developed a very simple Twitter-based coordination system overnight. UAV teams could now tweet their flight plans which would get automatically added to an online map and database. The UAV teams kept tweeting but not a single one bothered to tweet their plan.

To say this was problematic is an understatement. When organizations like WFP are using manned aircraft and helicopters to deliver urgent relief supplies to affected communities, they and ATC need to know which UAVs are flying where, how high and when. This is also true of Search and Rescue (SaR) teams that often fly their helicopters at low altitudes. In due course, we’ll have transponders to track UAVs in real-time. But safety is not the only consideration here. There is also a question of efficiency. It turns out that several UAV teams in Nepal carried out aerial surveys of the exact same areas, which is hardly optimal.

So I applaud the WFP for their important leadership on this matter and look forward to working with them and in-country stakeholders to develop practical coordination mechanisms. In the meantime, WeRobotics has set up Nepal Flying Labs to build local capacity around the use of UAVs and enable local responders to use UAVs safely, responsibly and effectively. All of our Flying Labs will adopt the resulting coordination mechanisms developed with WFP and stakeholders. 

Cargo Drones Deliver in the Amazon Rainforest

Cross-posted from WeRobotics

The Amazon is home to thousands of local indigenous communities spread across very remote areas. As a result, these sparsely populated communities rarely have reliable access to essential medicines and public health services. Local doctors in the region of Contamana report an average of 45 snakebites per month and no rapid access to antivenom, for example. We recently traveled to the rainforest to learn more about these challenges, and to explore whether cargo drones (UAVs) could realistically be used to overcome some of these problems in a sustainable manner. We’re excited to share the results of our latest field tests in this new report (PDF); Spanish version here. For high-resolution photos of the field tests, please follow this link. Videos below.

F8. Frankie 8

Our cargo drone flights were carried out in collaboration with the Peruvian Ministry of Health and local doctors. The field-tests themselves were coordinated by our local WeRobotics lab: Peru Flying Labs. Anti-venom was flown from the town of Contamana to the more remote village of Pampa Hermosa about 40 kilometers away. A regular boat (canoe) takes up to 6 hours to complete the journey. Our drone took around 35 minutes.

At night, we flew the drone back to Contamana with blood samples. While cargo drone projects typically use very expensive technology, WeRobotics prefers to use affordable and locally repairable solutions instead. Behind the scenes footage of the actual cargo drone flown in the Amazon is available in the video below.

Thanks to the success of our first drone deliveries, we’ve been invited back by the Ministry of Health and local doctors to carry out additional field tests. This explains why our Peru Flying Labs team is back in the Amazon this very week to carry out additional drone deliveries. We’re also gearing up to carry out deliveries across a distance of more than 100km using affordable drones. In parallel, we’re also working on this innovative Zika-control project with our Peru Flying Labs; drawing on lessons learned from our work in the Amazon Rainforest.

We’ll be giving a free Webinar presentation on all our efforts in Peru on Wednesday, February 22nd at 11am New York time / 4pm London. Please join our email-list for more information.

PeruDec16-0525-IMG_8379 (1)

To support our local Flying Labs teams in Peru, Nepal and/or Tanzania with donations, kindly contact Peter Mosur (peter@werobotics.org). For media inquiries on the Amazon Rainforest project and WeRobotics, please contact Dr. Patrick Meier (patrick@werobotics). Ministry of Health officials and other local partners are also available for interviews.


About WeRobotics

The mission of WeRobotics is to scale the positive impact of social good projects through the use of appropriate robotics solutions. We do this by creating robotics labs (Flying Labs) that transfer professional skills and robotics solutions locally. We have Flying Labs in Asia (Nepal), Africa (Tanzania), and South America (Peru). WeRobotics is funded by the Rockefeller Foundation, which enabled the recent project in the Amazon rain-forest with our Peru Flying Labs.

First Ever Cargo Drone Deliveries in Amazon Rainforest

Cross-posted from WeRobotics

The Amazon is home to thousands of local indigenous communities spread across very remote areas. As a result, these sparsely populated communities rarely have reliable access to essential medicines and public health services. Local doctors in the region report an average of 45 snakebites per month and no rapid access to anti-venom meds, for example. We recently traveled to the rainforest to learn more about these challenges and to explore whether cargo drones (UAVs) could realistically be used to overcome some of these challenges in a sustainable manner. We’re excited to share that our cargo drone flights in the Amazon rainforest were a big success!

pic-1

This unique and successful pilot project was a big team effort including our Peru Flying Labs Coordinator Juan Bergelund, UAV del Peru and the Peruvian Ministry of Health along with some of Peru’s leading public health experts. We carried out both day and night autonomous flights between local health hub Contamana and the remote village of Pampa Hermosa around 40 kilometers away. The drones delivered life-saving anti-venom medicines as well as blood samples. The flights took around 35 minutes compared to traditional riverboat transportation, which can take up to 6 hours.

pic-2
We have already been asked by multiple local authorities in the region to carry out additional flights in coming months. These flights will test the aerial delivery of medical supplies across 100+ kilometers. A detailed review of our recent flight tests will be released in early January along with high definition pictures and videos. Our Peru Flying Labs will also be working on this Zika reduction project in Peru using cargo drones. For media enquiries, please contact Dr. Patrick Meier (patrick@werobotics) and Juan Bergelund (juan@werobotics). Ministry of Health officials and other partners are also available for interviews.

pic-3

In the meantime, we wish to sincerely thank all our outstanding partners and colleagues in Peru for their invaluable support and partnership over the past two weeks. We are very excited to continue our good work together in coming months and years.


About WeRobotics

The mission of WeRobotics is to scale the positive impact of social good projects through the use of appropriate robotics solutions. We do this by creating robotics labs (Flying Labs) that transfer professional skills and robotics solutions locally. We have Flying Labs in Asia (Nepal), Africa (Tanzania) and South America (Peru). WeRobotics is funded by the Rockefeller Foundation, which enabled the recent project in the Amazon rainforest with our Peru Flying Labs.

The Most Comprehensive Study on Drones in Humanitarian Action

In August 2015, the Swiss humanitarian organization FSD kindly hired me as a consultant to work on the EU-funded Drones in Humanitarian Action program. I had the pleasure of working closely with FSD and team during the past 16 months. Today represents the exciting culmination of a lot of hard work by many dedicated individuals.

Today we’re launching our comprehensive report on “Drones in Humanitarian Action: A Guide to the Use of Airborne Systems in Humanitarian Crises.” The full report is available here (PDF). Our study draws on extensive research and many, many consultations carried out over a year and a half. The report covers the principle actors & technologies along with key applications and case studies on both mapping and cargo drones. Note that the section on cargo delivery is drawn from a larger 20+ page study I carried out. Please contact me directly if you’d like a copy of this more detailed study. In the meantime, I want to sincerely thank my fellow co-authors Denise Soesilo, Audrey Lessard-Fontaine, Jessica Du Plessis & Christina Stuhlberger for this productive and meaningful collaboration.

screenshot-2016-12-02-09-03-23

The report and case studies are also available on the FSD Website.

Reverse Robotics: A Brief Thought Experiment

Imagine a world in which manually controlled technologies simply do not exist. The very thought of manual technologies is, in actual fact, hardly conceivable let alone comprehensible. Instead, this seemingly alien world is seamlessly powered by intelligent and autonomous robotics systems. Lets call this world Planet AI.

PlanetAI

Planet AI’s version of airplanes, cars, trains and ships are completely unmanned. That is, they are fully autonomous—a silent symphony of large and small robots waltzing around with no conductor in sight. On one fateful night, a young PhD student awakens in a sweat unable to breathe, momentarily. The nightmare: all the swirling robots of Planet AI were no longer autonomous. Each of them had to be told exactly what to do by the Planet’s inhabitants. Madness.

She couldn’t go back to sleep. The thought of having to tell her robotics transport unit (RTU) in the morning how to get from her studio to the university gave her a panic attack. She would inevitably get lost or worse yet crash, maybe even hurt someone. She’d need weeks of practice to manually control her RTU. And even if she could somehow master manual steering, she wouldn’t be able to steer and work on her dissertation at the same time during the 36-minute drive. What’s more, that drive would easily become a 100-minute drive since there’s no way she would manually steer the RTU at 100 kilometers an hour—the standard autonomous speed of RTUs; more like 30km/h.

And what about the other eight billion inhabits of Planet AI? The thought of having billions of manually controlled RTUs flying, driving & swimming through the massive metropolis of New AI was surely the ultimate horror story. Indeed, civilization would inevitably come to an end. Millions would die in horrific RTU collisions. Transportation would slow to a crawl before collapsing. And the many billions of hours spent working, resting or playing in automated RTU’s every day would quickly evaporate into billions of hours of total stress and anxiety. The Planet’s Global GDP would free fall. RTU’s carrying essential cargo automatically from one side of the planet to the other would need to be steered manually. Where would those millions of jobs require such extensive manual labor come from? Who in their right mind would even want to take such a dangerous and dull assignment? Who would provide the training and certification? And who in the world would be able to pay for all the salaries anyway?

At this point, the PhD student was on her feet. “Call RTU,” she instructed her personal AI assistant. An RTU swung by while she as putting on her shoes on. Good, so far so good, she told herself. She got in slowly and carefully, studying the RTU’s behavior suspiciously. No, she thought to herself, nothing out of the ordinary here either. It was just a bad dream. The RTU’s soft purring power source put her at ease, she had always enjoyed the RTU’s calming sound. For the first time since she awoke from her horrible nightmare, she started to breathe more easily. She took an extra deep and long breath.

starfleet

The RTU was already waltzing with ease at 100km per hour through the metropolis, the speed barely noticeable from inside the cocoon. Forty-six, forty-seven and forty-eight; she was counting the number of other RTU’s that were speeding right alongside her’s, below and above as well. She arrived on campus in 35 minutes and 48 seconds—exactly the time it had taken the RTU during her 372 earlier rides. She breathed a deep sigh of relief and said “Home Please.” It was just past 3am and she definitely needed more sleep.

She thought of her fiancée on the way home. What would she think about her crazy nightmare given her work in the humanitarian space? Oh no. Her heart began to race again. Just imagine the impact that manually steered RTUs would have on humanitarian efforts. Talk about a total horror story. Life-saving aid, essential medicines, food, water, shelter; each of these would have to be trans-ported manually to disaster-affected communities. The logistics would be near impossible to manage manually. Everything would grind and collapse to a halt. Damage assessments would have to be carried manually as well, by somehow steering hundreds of robotics data units (RDU’s) to collect data on affected areas. Goodness, it would take days if not weeks to assess disaster damage. Those in need would be left stranded. “Call Fiancée,” she instructed, shivering at the thought of her fiancée having to carry out her important life-saving relief work entirely manually.


The point of this story and thought experiment? While some on Planet Earth may find the notion of autonomous robotics system insane and worry about accidents, it is worth noting that a future world like Planet AI would feel exactly the same way with respect to our manually controlled technologies. Over 80% of airplane accidents are due to human pilot error and 90% of car accidents are the result of human driver error. Our PhD student on Planet AI would describe our use of manually controlled technologies a suicidal, not to mention a massive waste of precious human time.

Screen Shot 2016-07-07 at 11.11.08 AM

An average person in the US spends 101 minutes per day driving (which totals to more than 4 years in their life time). There are 214 million licensed car drivers in the US. This means that over 360 million hours of human time in the US alone is spent manually steering a car from point A to point B every day. This results in more than 30,000 people killed per year. And again, that’s just for the US. There are over 1 billion manually controlled motor vehicles on Earth. Imagine what we could achieve with an additional billion hours every day if we had Planet AI’s autonomous systems to free up this massive cognitive surplus. And lets not forget the devastating environmental impact of individually-owned, manually controlled vehicles.

If you had the choice, would you prefer to live on Earth or on Planet AI if everything else were held equal?

How to Democratize Humanitarian Robotics

Our world is experiencing an unprecedented shift from manually controlled technologies to increasingly intelligent and autonomous systems powered by artificial intelligence (AI). I believe that this radical shift in both efficiency and productivity can have significant positive social impact when it is channeled responsibly, locally and sustainably.

WeRobotics_Logo_New

This is why my team and I founded WeRobotics, the only organization fully dedicated to accelerating and scaling the positive impact of humanitarian, development and environmental projects through the appropriate use of AI-powered robotics solutions. I’m thrilled to announce that the prestigious Rockefeller Foundation shares our vision—indeed, the Foundation has just awarded WeRobotics a start-up grant to take Humanitarian Robotics to the next level. We’re excited to leverage the positive power of robotics to help build a more resilient world in line with Rockefeller’s important vision.

Print

Aerial Robotics (drones/UAVs) represent the first wave of robotics to impact humanitarian sectors by disrupting traditional modes of data collection and cargo delivery. Both timely data and the capacity to act on this data are integral to aid, development and environmental projects. This is why we are co-creating and co-hosting global network of “Flying Labs”; to transfer appropriate aerial robotics solutions and relevant skills to outstanding local partners in developing countries who need these the most.

Our local innovation labs also present unique opportunities for our Technology Partners—robotics companies and institutes. Indeed, our growing network of Flying Labs offer a multitude of geographical, environmental and social conditions for ethical social good projects and responsible field-testing; from high-altitude glaciers and remote archipelagos experiencing rapid climate change to dense urban environments in the tropics subject to intense flooding and endangered ecosystems facing cascading environmental risks.

The Labs also provide our Technology Partners with direct access to local knowledge, talent and markets, and in turn provide local companies and entrepreneurs with facilitated access to novel robotics solutions. In the process, our local partners become experts in different aspects of robotics, enabling them to become service providers and drive new growth through local start-up’s and companies. The Labs thus seek to offer robotics-as-a-service across multiple local sectors. As such, the Labs follow a demand-driven social entrepreneurship model designed to catalyze local businesses while nurturing learning and innovation.

Of course, there’s more to robotics than just aerial robotics. This is why we’re also exploring the use of AI-powered terrestrial and maritime robotics for data collection and cargo delivery. We’ll add these solutions to our portfolio as they become more accessible in the future. In the meantime, sincerest thanks to the Rockefeller Foundation for their trust and invaluable support. Big thanks also to our outstanding Board of Directors and to key colleagues for their essential feed-back and guidance.