Category Archives: Crisis Mapping

Moving on from WeRobotics, with Gratitude

CDA Photo 1

It is time for a new chapter of WeRobotics to begin. This next stretch of the journey must include more diverse executive leadership. I’m thus stepping down as Executive Director of WeRobotics.* I feel deeply about this personal and professional decision, and didn’t come to it lightly or quickly. Thankfully, the WeRobotics Board has given me their full backing. With this next step, we can continue to walk the talk on diversity, equity, inclusion, localization and shift the power. Equally importantly, this new chapter presents all Flying Labs with a positive opportunity to shape the governance of WeRobotics itself.

Flying Labs are independent, locally-led knowledge hubs that combine local leadership and expertise with emerging technologies to drive positive and sustainable social impact. They’re co-created with WeRobotics but hosted and run by locally-owned organizations, companies, and/or social enterprises. WeRobotics serves as the primary enabler of the Flying Labs Network. 

Screenshot 2023-01-10 at 11.38.52

I want to express my deepest gratitude to all of you who worked with us to expand the power of locally-led action over the past 7+ years. Together, we’ve significantly expanded the quality and quantity of locally-led opportunities across multiple sectors. We also built greater respect and more robust demand for local leadership, ownership, knowledge, and expertise. How? By co-creating and co-implementing a radical decentralization and localization model with a wide range of Flying Labs in nearly 40 countries. The collective impact of this model speaks for itself.

We’ve accomplished a lot together. I can’t list every single example here, so will just share a few key accomplishments that mean a lot to me given my values, interests, and direct contributions. While I was largely responsible for catalyzing, championing, and/or coordinating the efforts below, it took our outstanding and purpose-driven teammates at WeRobotics and across the Flying Labs Network to refine these efforts, improve and extend them, and to translate them into direct, meaningful impact. We also relied on strong external partners, donors, dedicated Board Members and phenomenal interns. This was a true team effort in every sense of the word. As we all know, the myth of the lone leader is pure fantasy. 


2015WeR

In 2015, one of my WeRobotics Co-Founders — Dr. Andrew Schroeder — and I launched the first-ever program dedicated to the locally-led use of drones for disaster management (AidRobotics). Together with many Flying Labs, we built the World Food Program’s (WFP) own institutional expertise in this space over multiple years. This included WeRobotics and Flying Labs leading half-a-dozen hands-on professional trainings for country teams in Africa, Asia, Latin America, and the Caribbean, not to mention with other UN agencies, from Malawi to the Maldives. Since then, Flying Labs have led their own trainings and operational deployments in response to a wide range of disasters across the globe. What’s more, we were amongst the first to apply machine learning and AI to automate the analysis of drone imagery (building on earlier work done at QCRI). I also launched a professional, peer-reviewed online training on the use of drones in humanitarian action, the only course of its kind. 

AidRobotics was our foundational and single most active program during the first critical years of WeRobotics. In fact, this program played an instrumental role in defining WeRobotics’ values, model and mission. So it’s worth expanding on this. AidRobotics was strongly influenced by UAViators, a global professional network and community of practice I founded in 2013 with an explicit focus on localization, ethics, and best practices. In fact, the initial decentralization idea of Flying Labs actually originated from UAViators. This also explains why Nepal Flying Labs (the first Flying Labs) predates WeRobotics by well over a year, and why the first Flying Labs projects were implemented in partnership with UAViators. Our joint learnings in Nepal later informed the launch of this digital solution to coordinate drone flights in disasters.

Screenshot 2023-01-12 at 15.15.24

In fact, the entire AidRobotics Program — including the Code of Conduct, training expertise, and our deployment experience — was a direct spinoff from the open collaborations at the heart of the UAViators community. We brought to WeRobotics our strong interest in localization and locally-led action thanks to this early operational and policy engagement. We also brought our core values and a strong commitment to decentralization and locally-led action. See the section “From UAViators to WeRobotics” in this peer-reviewed publication.

The foundational work through UAViators served to catalyze the co-creation of the Flying Labs Network, which has successfully expanded the space for locally-led action in the use of emerging technologies for social impact. So the Flying Labs Network feels like the pinnacle of a long journey from when I first began working on localization and people-centered projects in 2006, within the context of early warning and response systems in humanitarian emergencies. On the tech side, I’ve been working in humanitarian technology since co-founding and co-directing the Harvard Humanitarian Initiative’s (HHI) Program on Crisis Mapping in 2007. The first time I wrote about the use of drones in humanitarian action was in 2008.

2016WeR

In 2016, we teamed up with Peru Flying Labs to launch the first-ever program dedicated to the locally-led use of drones for medical delivery (HealthRobotics). Peru Flying Labs initiated this program through an explicit request to explore the possibilities of medical drone delivery in the Amazon Rainforest. To date, WeRobotics and several different Flying Labs have carried out more locally-driven drone delivery trainings and projects in more countries than any other organization or company thanks to our strategic partnerships with WHO, the CDC, Gates Foundation, Pfizer, Johnson & Johnson, and BD, along with multiple Ministries of Health, hospitals, clinics, doctors, nurses, and patients in Africa, Asia, Latin America, the Caribbean, and the South Pacific. Furthermore, we made drone delivery far more accessible than any other organization. 

drcargo

What’s more, thanks to the leadership of Flying Labs, we were the first to enable locally-led cargo drone deliveries in Peru, Dominican Republic, Nepal, Papua New Guinea, Uganda, and the Philippines, among others. We also enabled large-scale locally-led deliveries in Madagascar. To share our learnings, I launched a professional, peer-reviewed online training on using cargo drones in health. This is still the only ongoing course of its kind. Like the AidRobotics course, it was peer-reviewed by MIT, UPenn and Direct Relief experts.  

2017WeR

In 2017, we collectively launched and grew our dedicated engineering team to make cargo drones far more accessible to Flying Labs, and to offer Flying Labs both in-house add-on technology to use drones in a broader range of social good applications. The purpose of doing so was to enable Flying Labs to become first-movers in their own countries, as opposed to foreign companies and consultants who often parachute in with little local knowledge or interest in local ownership. 

WeRWMPic

Our engineering expertise enabled both WeRobotics and Flying Labs to explore novel drone applications, including the precision release of beneficial mosquitoes to eliminate Dengue and Zika; Ladybugs to protect pecan trees and Mangrove seeds for climate change mitigation. The level of expertise needed to design and build these autonomous and drone-optimized release systems was considerable. Some members of the WeRobotics engineering team have since created a spinoff (formerly called Release Labs) to pursue related opportunities in the social impact space. I’m proud to have played a long and instrumental role in incubating this climate tech startup.

2018WeR

In 2018, we fully democratized the Flying Labs Network, enabling qualified local organizations worldwide to join the Network. We co-created a localization model with all the required guidelines and governance mechanisms to respond to the priorities and interests of local organizations. This development was important to me because of my strong interest in locally-led action and decentralization prior to WeRobotics. Fellow Co-Founder Andrew hasn’t received enough public credit for helping to shape this democratization and decentralization model, which paved the way for the Flying Labs Network to become a social movement dedicated to The Power of Local. This model ultimately enabled the Network to grow from three Flying Labs in 2018 to nearly 40 in 2023 (despite the devastating multi-year pandemic in between). You can read more about the model and its applications to other sectors here. Another proud accomplishment of 2018 was the launch of our Online Training Academy!

2019WeR

In 2019, we launched a new dedicated program to engage youth directly (YouthRobotics). WeRobotics and Flying Labs were the first to carry out hands-on youth trainings and projects in dozens of countries. These locally-led projects included aerial, terrestrial, and marine robotics. I initially took the lead in this program and secured our first funding for STEM projects. Together with multiple colleagues, we subsequently had the opportunity to co-implement these first activities in the South Pacific. This opened the door for many STEM projects that followed. As part of the YouthRobotics Program, we also teamed up with Flying Labs to co-create the first-ever picture book for children that is explicitly geared towards the importance of local knowledge, leadership, and ownership when it comes to the use of emerging technologies for social good projects. There are plans to turn this into a book series with Flying Labs.

panyouth

It’s worth noting that the three most active and impactful operational programs at WeRobotics over the past 7+ years have been the AidRobotics, HealthRobotics, and YouthRobotics Programs. This is all thanks to the dedicated WeRobotics and Flying Labs Teams who took these programs to the next level. There are many more accomplishments to write about within each of these three programs, so perhaps another book is in order! 

2020WeR

In 2020, with the COVID outbreak, I led the launch of this dedicated campaign to directly inform the appropriate use of drone technology in response to the pandemic. That same year, following our public commitment to anti-racism, I catalyzed our efforts to diversify our Board, shift our communications strategy and make the WeRobotics Team more inclusive. I’m very proud that we successfully accomplished each of the goals in our public commitment thanks to a huge team effort. I later led the launch of this shift-the-power series to document our concrete steps in shifting power with local organizations. All these efforts were central to our organizational transformation. In addition, we launched the Flying Council with Flying Labs to accelerate our Stopping-as-Success explorations. I’m a western white male who works hard to understand and reflect on my privileged role and how to transform individually. This position of power can have an impact on organizations, including WeRobotics and Flying Labs. I recognize that shifting the power is a continuous and hard-fought journey, and still have a lot to learn.

2021WeR

In 2021, we teamed up with multiple Flying Labs to fully document our joint localization and shift-the-power model, which we first began co-creating with Flying Labs in 2018. Why? Because the model was simply not getting enough visibility in policy circles, or influencing mainstream discussions on localization. We also wanted to make the model more accessible for others to adapt and adopt. So I took the lead from the WeRobotics side by working closely with many Flying Labs. As always, their insights were considerable and their input invaluable. The applied research and writing took over five months. Once completed, we launched this detailed report on our decentralization model at the Skoll World Forum to demonstrate and explain the model’s success. CDA Photo 2 - LocRep

The co-creation of this model will undoubtedly remain one of my proudest accomplishments at WeRobotics. We also used the high-profile Skoll event to formally launch the Power Footprint Project, which I’m also very passionate about. And we fully updated our Shift-the-Power strategy, along with the impact pages of WeRobotics and Flying Labs

2022WeR

In 2022, following another successful independent audit, we publicly confirmed that in 2021, WeRobotics transferred 42% of its own revenue and funding to local organizations. The industry average in the humanitarian and development space is typically 2-3%. This makes us one of the few international nonprofit organizations worldwide to accomplish such high levels of equity. We did this by walking the talk; by using our co-created localization model that clearly places local organizations first, along with local leadership, ownership, and expertise. In 2022, we also launched this dedicated call for the Power Footprint Project. The Board is exploring how best to move this project forward. 

During the second half of 2022, I worked closely with colleagues to initiate necessary organizational improvements in terms of Board oversight, governance, decision-making, executive performance reviews, accountability mechanisms, and more. I proactively reached out to the Board on this, working directly with them — and with the Head of Human Resources and Head of Finance — to ensure that WeRobotics stands on solid institutional foundations for the future. This essential work took up 120% of my own time between June and October 2022; groundwork that should enable WeRobotics to be more in line with institutional best practices in 2023. These organizational improvements are among the most important contributions I’ve made at WeRobotics. Leading a transformation agenda can be complex and result in burnout.

On the funding front, we successfully secured support from innovative partners who strongly believed in our mission throughout the years. This includes — but is certainly not limited to — The Rockefeller Foundation, Hewlett Foundation, Gates Foundation, Autodesk Foundation, Jansen Foundation, Atlassian Foundation, Fondation Botnar, Omidyar Network, Twilio Foundation, PagerDuty, MIT Solve, multiple United Nations Agencies, World Bank, Inter-American Development Bank (IADB), USAID, Australia’s Department of Foreign Affairs and Trade (DFAT), BD, Pfizer, Johnson & Johnson, and more. 

There’s definitely a lot more that I’m proud of, such as our 100% success rate in passing all of our rigorous and independent audits; the many technology partnerships we’ve secured; leading our expansion into both marine robotics and terrestrial robotics; the Social Ripples systems change project; and our new and improved impact monitoring framework. Not to mention many other essential accomplishments that I wasn’t involved in, such as locally-led drone certification courses, WeShare — our knowledge sharing platform built with Flying Labs; the Labs’ Global Model; the launch of Labs Use-Cases; and many more projects featured on the WeRobotics and Flying Labs blogs, and in our Annual Reports.

To conclude, the most crucial point to take away is this: the enormous team efforts across both WeRobotics and the Flying Labs Network made all the above accomplishments possible and successful. 


2023WeR

I’m excited about the next chapter of WeRobotics and Flying Labs. The Flying Labs Network is expected to grow to well over 40 Flying Labs in 2023. There simply is no other network quite like this one. Flying Labs are already training each other and implementing joint projects with each other. This trend will increase substantially, resulting in even more network effects. As I remind all my Flying Labs colleagues during our retreats over the years: “You are each other’s single best resource!” 

Whoever becomes the next Executive Director of WeRobotics matters a lot to Flying Labs. So the WeRobotics Board will reach out to all Labs to invite their nominations for strong leadership candidates who are fully committed to our core values. This new chapter is a big positive opportunity for Flying Labs to shape the governance of WeRobotics itself. While change is never easy, the benefits are clear. The significant value-add of greater diversity in team leadership is very well proven. More diverse leadership at WeRobotics will also enable Flying Labs to gain greater access to new funding opportunities.

And don’t forget that WeRobotics has a strong Alumni Network! For example, Joseph (former Head of Drone Data and Systems); Jürg (former Head of Engineering); Seb (former Lead Engineer), and also Cameron (former Lead Engineer), amongst others, all joined the Alumni Network in the past 10 months. What’s more, the Head of HR is joining the network in the coming months, as is the Head of Finance. So WeRobotics has top-notch alumni to draw on. In fact, several alumni have already supported multiple colleagues at Flying Labs and WeRobotics. I pledge to do the same. 

When the time is right, I’ll publish a blog post to share the most important professional and personal insights I’ve gained while at WeRobotics, along with the most important lessons learned as executive director during the past 7+ years. This will include my first-hand experience and lessons learned working with a Board. I hope that sharing my learnings will be of value to others. It is essential to me that we live up to our core values externally and internally. 

It was an incredible honor and privilege to serve as the official director of this organization.* What I’ll miss the most is my dear colleagues at WeRobotics and Flying Labs; their compassion, kindness, brilliance, dedication and humor. We laughed a lot during our recent Flying Labs Retreat in Nairobi, and we cried (happy tears of gratitude), shared meals, sang, listened to powerful poetry, and even danced. It was good for the soul, as were the many in-person hugs and the energy, inspiration, determination, and brilliance that Flying Labs colleagues brought to the many discussions. I’ll miss this Flying Labs magic, the Power of Local. So I look forward to following their good work.

Screenshot 2023-01-10 at 12.11.25

In sum, I am deeply grateful to everyone who made the above contributions possible and more impactful. You all know who you are. You were there, time and time again, to expand the space for locally-led action. I’ll be forever grateful to you. Lastly, and equally importantly, I want to explicitly recognize and thank each of my colleagues for their proudest accomplishments at WeRobotics and across the Flying Labs Network. Keep shining!

Per Aspera ad Astra.
Through adversity to the stars.


* The WeRobotics Board of Directors did not approve the Co-CEO titles, which is why I’m using the approved title of ED.

Back to the Future: Drones in Humanitarian Action

A devastating earthquake struck Nepal on April 25th, 2015. The humanitarian drone response to the earthquake was almost entirely foreign-led, top-down and techno-centric. International drone teams self-deployed and largely ignored the humanitarian drone code of conduct. Many had never heard of humanitarian principles and most had no prior experience in disaster response. Some were arrested by local authorities. At best, these foreign drone teams had little to no impact. At worse, they violated the principle of Do No Harm. Nepal Flying Labs was co-created five months after the earthquake, on September 25th, 2015, to localize the responsible and effective use of drones for positive social impact. Today, Flying Labs are operational in 25 countries across Asia, Africa and Latin America.

This month, on behalf of the World Food Program (WFP), WeRobotics teamed up with Nepal Flying Labs and WFP Nepal to run a 5-day hands-on training and disaster simulation to improve the rapid deployment and coordination of drones in humanitarian action. WeRobotics previously designed and ran similar humanitarian drone trainings and simulations on behalf of WFP (and others) in the Dominican Republic, Peru, Myanmar, Malawi and Mozambique, for example. In fact, WeRobotics has been running humanitarian drone trainings since 2015 both in-person and online.

All 25 Flying Labs typically run their trainings in local languages. As such, the 5-day training in Nepal was largely led by Nepal Flying Labs and run in Nepali. Over 40 participants from 16 Nepali organizations took the training, which included an introduction to drone technologies,  drone photogrammetry, imagery processing, lessons learned and best practices from past humanitarian drone missions, and overviews of codes of conduct, data protection protocols and coordination mechanisms, all drawn from direct operational experience. The training also comprised a series of excellent talks given by Nepali experts who are already engaged in the use of drones in disaster management and other sectors in Nepal. This featured important talks by several officials from the Civil Aviation Authority of Nepal (CAAN). In addition, the training included a co-creation session using design thinking methods during which local experts identified the most promising humanitarian applications of drone technology in Nepal.

Nepal Flying Labs also trained participants on how to fly drones and program drone flights. The drones were rented locally from the Flying Labs and their partners. This hands-on session, kindly hosted by Kathmandu University, was followed by another hands-on session on how to process and analyze aerial imagery. In this session, Nepal Flying Labs introduced participants to Pix4Dreact and Picterra. Pix4Dreact provides an ultra-rapid solution to data processing, allowing humanitarian drone teams to process 1,000 high-resolution aerial images in literally minutes, which is invaluable as this used to take hours. Picterra enables drone teams to quickly analyze aerial imagery by automatically identifying features of interest to disaster responders such as damaged buildings, for example. While Picterra uses deep learning and transfer learning to automate feature detection, users don’t need any background or prior experience in artificial intelligence to make full use of the platform. During the hands on-session, trainers used Picterra to automatically detect buildings in aerial (orthophoto) map of an earthquake-affected area.

After completing a full day of hands-on training, Nepal Flying Labs gave a briefing on the disaster simulation scheduled for the following day. The simulation is the centerpiece of the humanitarian drone trainings run by WeRobotics and Flying Labs. It requires participants to put into practice everything they’ve learned in the training. The simulation consolidates their learning and provides them with important insights on how to streamline their coordination efforts. It is often said that disaster responders train the way they respond and respond they way they train. This is why simulations are absolutely essential.

The simulation was held at Bhumlu Rural Municipality, a 3+ hour drive from Kathmandu. Bhumlu is highly prone to flooding and landslides, which is why it was selected for the simulation and why the Government of Nepal was particularly keen to get high-resolution maps of the area. The disaster simulation was run by Nepal Flying Labs in Nepali. The simulation, first designed by WeRobotics in 2015, consists of three teams (Authorities, Pilots and Analysts) who must work together to identify and physically retrieve colored markers as quickly and safely as possible. The markers, which were placed across Bhumlu prior to participants’ arrival, are typically 1 meter by 1 meter in size, and each color represents an indicator of interest to humanitarians, e.g., Yellow = survivor; Blue = landslide; and Red = disaster damage. Both the colors and the number of different markers are customized based on the local priorities. Below, Nepal Flying Labs Coordinator Uttam Pudasaini hides a yellow marker under a tree prior to the arrival of participants.

Myanmar has held the record for the fastest completion of the simulation since 2017. As such, they’ve held the number one spot and been the gold standard for two years now. The teams in Myanmar, who were trained by WeRobotics, retrieved all markers in just over 4 hours. As such, WeRobotics challenged the teams in Nepal to beat that record and take over the number one spot. They duly obliged and retrieved all markers in a very impressive time of 3 hours and 4 minutes, clenching the number one spot from Myanmar.

On the following and final day of the workshop, Nepal Flying Labs and WeRobotics facilitated an all-hands session to debrief on the simulation, inviting each team and trainee to reflect on lessons learned and share their insights. For example, a feedback loop between the Pilots and Analysis Teams is important so pilots can plan further flights based on the maps produced by the analysts. Like a number of previous simulations run by WeRobotics, the Analysis Team noted that having a portal printer on hand would be ideal. The Pilots Team also suggested that having different colored visibility vests would’ve enabled more rapid field coordination between and within teams by enabling individuals to more quickly identify who is who.

When asked which individuals or group had the most challenging job in the simulation, the consensus was the retrieval group who are part of the Authorities Team and responsible for retrieving the markers after they’ve been geo-located by the Analysis Team. This was particularly interesting given that in all previous simulations run by WeRobotics, the consensus had always been that the Analysis Team had the hardest task. In coming weeks, these insights together with the many others gained from the simulation in Nepal will be added to this document on best practices in humanitarian drone missions.

After the full simulation debrief, Nepal Flying Labs facilitated the final session of the training: a panel discussion on the development of drone regulations to save lives and reduce suffering in Nepal. The panelists included senior officials from Civil Aviation, Home Ministry and Nepal Police. The session was run in Nepali and presented participants with an excellent opportunity to engage with and inform key policymakers. In preparation for this session, Nepal Flying Labs and partners prepared this 3-page policy document (PDF) with priority questions and recommendations, which served as the basis for the Q&A with the panel. This discussion and policy document created a roadmap for next steps which Nepal Flying Labs and partners have pledged to take forward with all stakeholders.


Acknowledgements: WeRobotics and Nepal Flying Labs would like to sincerely thank WFP HQ and WPF Nepal for the kind invitation to run this training and for providing the superb coordination and logistics that made this training so fruitful. WeRobotics and Nepal Flying Labs would also like to express sincere thanks to DroNepal for co-leading the training with Nepal Flying Labs. Sincere thanks to the local communities we worked with during the simulation and to the CAA and local police for granting flight permissions. To all 40+ participants, sincerest thanks for all the energy you brought to the training and for your high levels of engagement throughout each of the 5 days, which significantly enriched the training. Last but certainly not least, sincere thanks to the Belgium Government for funding this training.

Digital Humanitarians in Space: Planet Launches Rapid Response Team

Planet has an unparalleled constellation of satellites in orbit. In addition to their current constellation of 130 micro-satellites, they have 5 RapidEye satellites and the 7 SkySat satellites (recently acquired from Google). What’s more, 48 new micro-satellites were just launched into orbit this July, bringing the total number of Planet satellites to 190. And once the 48 satellites begin imaging, Planet will have global, daily coverage of the entire Earth, covering over 150 million square kilometers every day. Never before has the humanitarian community had access to such a vast amount of timely satellite imagery.

As described in my book, Digital Humanitarians, this vast amount of new data adds to the rapidly growing Big Data challenge that humanitarian organizations are facing. As such, what humanitarians need is not just data philanthropy—i.e., free and rapid access to relevant data—they also need insight philanthropy. This is where Planet’s new Rapid Response Team comes in.

Planet just launched this new digital volunteer program in partnership with the Digital Humanitarian Network to help ensure that Planet’s data and insights get to the right people at the right time to accelerate and improve humanitarian response. After major disasters hit, members of the Rapid Response Team can provide the latest satellite images available and/or geospatial analysis directly to field-based aid organizations.

So if you’re an established humanitarian group and need rapid access to satellite imagery and/or analysis after major disasters, simply activate the Digital Humanitarian Network. You can request satellite images of disaster affected areas on a daily basis as well as before/after analysis (sliders) of those areas as shown above. This is an exciting and generous new resource being made available to the international humanitarian community by Planet, so please do take advantage.

In the meantime, if you have any questions or suggestions, please feel free to get in touch by email or via the comments section below. I serve as an advisor to Planet and am keen to make the Rapid Response initiative as useful as possible to humanitarian organizations.

The Future of Crisis Mapping is Finally Here

In 2010, I had the opportunity to participate in the very first Disaster Response Working Group meeting held at Facebook. The digital humanitarian response to the tragic Haiti earthquake months earlier was the main point of discussion. Digital Humanitarians at the time had crowdsourced social media monitoring and satellite imagery analysis to create a unique set of crisis maps used by a range of responders. Humanitarian organizations to this day point to the Haiti response as a pivotal milestone in the history of crisis mapping. Today marks an equally important milestone thanks to three humanitarian groups and Facebook.

Facebook just announced a new partnership with UNICEF, the International Federation of the Red Cross (IFRC), American Red Cross (ARC) and the World Food Program (WFP) to begin sharing actionable, real-time data that will fill critical data gaps that exist in the first hours of a sudden onset disaster. UNICEF, IFRC, ARC and WFP deserve considerable praise in partnering on such an innovative effort. As the IFRC’s World Disaster Report noted in 2005, having access to information during disasters is equally important as having access to food, water and medicine. But unlike these other commodities, information has a far shorter shelf life. In other words, the value of information depreciates very quickly; information rots fast.

Disaster responders need information that is both reliable and timely. Both are typically scarce after disasters. Saving time can make all the difference. The faster responders get reliable information, the faster they can prioritize and mobilize relief efforts based on established needs. Information takes time to analyze, however, especially unstructured information. Digital Humanitarians encountered this Big Data challenge first hand during the Haiti Earthquake response, and after most disasters since then. Still, online data has the potential to fill crucial data gaps. This is especially true if this data is made available in a structured and responsible way by a company like Facebook; a platform that reaches nearly 2 billion people around the world. And by listening to what aid organizations need, Facebook is providing this information in a format that is actually usable and useful.

Listening to Humanitarian Needs

In early 2016, I began consulting with Facebook on their disaster mapping initiative. One of our first orders of business was to reach out to subject matter experts around the world. It is all too easy for companies in Silicon Valley to speculate about solutions that could be useful to humanitarian organizations. The problem with that approach is that said companies almost never consult seasoned humanitarian professionals in the process. Facebook took a different approach. They spent well over half-a-year meeting with and listening to humanitarian professionals across a number of different aid organizations. Then, they co-developed the solution together with experts from UNCIEF, IFRC, ARC, WFP and myself. This process insured that they built solutions that are actually needed by the intended end users. Other Silicon Valley companies really ought to take the same approach when seeking to support social good efforts in a meaningful manner.

UNICEF, IFRC, ARC and WFP bring extensive expertise and global reach to this new partnership with Facebook. They have both the capacity and strong interest to fully leverage the new disaster maps being made available. And each of these humanitarian organizations have spent a considerable amount of time and energy collaborating with Facebook to iterate on the disaster maps. This type of commitment, partnership and leadership from the humanitarian sector is vital and indeed absolutely necessary to innovate and scale innovation.

One of the areas in which Facebook exercised great care was in applying protection standards. This was another area in which I provided guidance, along with colleagues at the International Committee of the Red Cross (ICRC). We worked closely with Facebook to ensure that their efforts followed established protection protocols in the humanitarian sector. In September 2016, for example, three Facebookers and I participated in a full-day protection workshop organized the ICRC. Facebook presented on the new mapping project – still in its very early stages – and actively solicited feedback from the ICRC and a dozen other humanitarian organizations that participated in the workshop. Facebook noted upfront that they didn’t have all the answers and welcomed as much input as humanitarian professionals could give. As it turns out, they were already well on their way to being fully in line with the ICRC’s own protection protocols.

Facebook also worked with its own internal privacy, security and legal teams to ensure that the datasets it produced were privacy-preserving and consistent with legal standards around the world. This process took a long time. Some insight from the “inside”: I began joking that this process makes the UN look fast. But the fact that Facebook was so careful and meticulous when it came to data privacy was certainly reassuring. To be sure, Facebook developed a rigorous review process to ensure that our applied research was carried out responsibly and ethically. This demonstrates that using data for high-impact, social good projects need not be at odds with privacy—we can achieve both. By using data aggregating and spatial smoothing, for example, we can reduce noise in the data and identify important trends while following its data privacy standards.

Another important area of collaboration very early on focused specifically on data bias. The team at Facebook was careful to emphasize that their data was not a silver bullet – it is representative of people who use Facebook on mobile with Location Services enabled. To this end, one of the areas I worked on closely with Facebook was validation. For example, in an early iteration of the maps, I analyzed mainstream media news reports on the Fort McMurray Fires in Canada and matched them with specific patterns we had observed on Facebook’s maps. The results suggested that Facebook’s geospatial data was providing reliable insights about evacuation and safety on the ground albeit in real time compared to the media reports which were published many hours later.

Facebook Safety Check

Within 24 hours of activating Safety Check, we see that there are far fewer people than usual in the town of Fort McMurray. Areas that are color-coded red reflect much lower numbers of Facebook users there compared to the same time the week before. This makes sense since these locations are affected by the wildfires and have thus been evacuated.

We can use Facebook’s Safety Check data to create live disaster maps that quickly highlight where groups of users are checking in safe, and also where they are not checking in safe. This could provide a number of important proxies such as disaster damage, for example.

Facebook Location Maps

We see that before the crisis began (left plot) people were located in the town in expected numbers, but quickly vacated over the next 24 hour period (map turning red). Even within just an hour and half into the crisis we can tell that users are evacuating the town (the red color indicating low values of people present compared to baseline data). This signal becomes even more clear and consistent as the crisis progresses.

Population here refers to the population of Facebook users. These aggregated maps can provide a proxy for population density and movement before, during and after humanitarian disasters.

In the above video, the blue line that stretches diagonally across the map is Highway 63, which was the primary evacuation route for many in McMurray. The video shows where the general population of Facebook users is moving over time at half-hour intervals. Notice that the blue line becomes even denser between 1 and 3 A.M. local time. Reports from the mainstream media published that afternoon revealed that many drivers ended up having to “camp” along the highway overnight.

Take the map below of the Kaikoura Earthquake in New Zealand as another example. The disaster maps for the earthquake show the location and movement of people in Kaikoura following the disaster. One day after the earthquake, we notice that the population begins to evacuate the city. Using news articles, we can cross validate that residents of Kaikoura were evacuated to Christchurch, 200 kilometers away. Several days later, we notice from the Facebook maps that individuals are starting to return to Kaikoura, presumably to repair and rebuild their community.

It’s still early days, and Facebook plans to work closely alongside their partners to better understand and report biases in the data. This is another reason why Facebook’s partnership with UNICEF, IFRC, ARC and WFP is so critical. These groups have the capacity to compare the disaster maps with other datasets, validate the maps with field surveys, and support Facebook in understanding how to address issues of representativeness. One approach they are exploring is to compare the disaster maps to the population density datasets that Facebook has already open-sourced. By making this comparison, we can clearly communicate any areas that are likely to be inadequately covered by the disaster data. They are also working with Facebook’s Connectivity Lab to develop bias-correcting solutions based on maps of cell phone connectivity. For more on social media, bias and crisis mapping, see Chapter 2 of Digital Humanitarians.

Moving Forward

Our humanitarian partners are keen to use Facebook’s new solution in their relief efforts. Thanks to Facebook’s data, we can create a series of unique maps that in turn provide unique insights and do so in real-time. These maps can be made available right away and updated at 15 minute intervals if need be. Let me repeat that: every 15 minutes. This is the first time in history that humanitarian organizations will have access to such high frequency, privacy-preserving structured data powered by some 1.86 billion online users.

There is no doubt that responders would’ve had far more situational awareness and far more quickly had these crisis maps existed in the wake of Haiti’s tragic earthquake in 2010. Since the maps aggregate Facebook data to administrative boundaries, humanitarian partners can also integrate this unique dataset into their own systems. During the first Facebook Disaster Working Group meeting back in 2010, we asked ourselves how Facebook might leverage it’s own data to create unique maps to help aid organizations reduce suffering and loss of life. Today, not only do we have an answer to this question, we also have the beginnings of an operational solution that humanitarians can use directly.

Facebook’s new disaster mapping solution is not a silver bullet, however; all my colleagues at Facebook recognize this full well, as do our humanitarian partners. These maps simply serve as new, unique and independent sources of real-time data and insights for humanitarian organizations. The number of Facebook users has essentially doubled since the Haiti Earthquake, nearing 2 billion users today. The more people around the planet connect and share on Facebook, the more insights responders gain on how best to carry out relief efforts during major disasters. This information is a public good that has the potential to save lives, and it’s crucial that insights derived from the data be made available to those who can put it to use. I sincerely hope that other Silicon Valley companies take note of these efforts and following in Facebook’s footsteps.

As a next step, Facebook is looking to both international and local humanitarian partners to help improve, validate and measure the impact of these new disaster maps. As the Facebook team works to validate the maps with the humanitarian community, they also hope to make the maps available to aid organizations though a dedicated API and Visualization tool. Interested organizations will be asked to follow a simple application process to gain access to the disaster maps.

Facebook disaster maps are really unique and we’ve only begun to scratch the surface vis-à-vis the different humanitarian efforts these maps can inform. For example, my team and I at WeRobotics were recently in the Dominican Republic (DR) where we ran a full-fledged disaster response exercise with the country’s Emergency Operations Center (EOC) and the World Food Program (WFP). The purpose of the simulation—which focused on searching for survivors and assessing disaster damage—was to develop and test coordination mechanisms to facilitate the rapid deployment of small drones or Unmanned Aerial Vehicles (UAVs). As the drone pilots began to program their drones to carry out the aerial surveys, I turned to my WFP colleague Gabriela and said:

“What if, during the next disaster, we used Facebook’s Safety Check Map to prioritize which areas the drones should search? What if we used Facebook’s Population Map to prioritize aerial surveys of areas that are being abandoned, possibly to due to collapsed buildings or other types of infrastructure damage? Since the Facebook maps are available in near real-time, we could program the drone flights within minutes of a disaster. What do you think?”

Gaby looked back at the drones and said:

“Wow. This would change everything.”


What Happens When the Media Sends Drone Teams to Disasters?

Media companies like AFP, CNN and others are increasingly capturing dramatic aerial footage following major disasters around the world. These companies can be part of the solution when it comes to adding value to humanitarian efforts on the ground. But they can also be a part of the problem.

screenshot-2016-10-26-04-51-44

Media teams are increasingly showing up to disasters with small drones (UAVs) to document the damage. They’re at times the first with drones on the scene and thus able to quickly capture dramatic aerial footage of the devastation below. These media assets lead to more views and thus traffic on news websites, which increases the probability that more readers click on ads. Cue Noam Chomsky’s Manufacturing Consent: The Political Economy of the Mass Media, my favorite book whilst in high school.

Aerial footage can also increase situational awareness for disaster responders if that footage is geo-located. Labeling individual scenes in video footage with the name of the towns or villages being flown over would go a long way. This is what I asked one journalist to do in the aftermath of the Nepal Earthquake after he sent me dozens of his aerial videos. I also struck up an informal agreement with CNN to gain access to their raw aerial footage in future disasters. On a related note, I was pleased when my CNN contact expressed an interest in following the Humanitarian UAV Code of Conduct.

In an ideal world, there would be a network of professional drone journalists with established news agencies that humanitarian organizations could quickly contact for geo-tagged video footage after major disasters to improve their situational awareness. Perhaps the Professional Society of Drone Journalists (PSDJ) could be part of the solution. In any case, the network would either have its own Code of Conduct or follow the humanitarian one. Perhaps they could post their footage and pictures directly to the Humanitarian UAV Network (UAViators) Crisis Map. Either way, the media has long played an important role in humanitarian disasters, and their increasing use of drones makes them even more valuable partners to increase situational awareness.

The above scenario describes the ideal world. But the media can (and has) been part of the problem as well. “If it bleeds, it leads,” as the saying goes. Increased competition between media companies to be the first to capture dramatic aerial video that goes viral means that they may take shortcuts. They may not want to waste time getting formal approval from a country’s civil aviation authority. In Nepal after the earthquake, one leading company’s drone team was briefly detained by authorities for not getting official permission.

screenshot-2016-10-26-05-07-05

Media companies may not care to engage with local communities. They may be on a tight deadline and thus dispense with getting community buy-in. They may not have the time to reassure traumatized communities about the robots flying overhead. Media companies may overlook or ignore potential data privacy repercussions of publishing their aerial videos online. They may also not venture out to isolated and rural areas, thus biasing the video footage towards easy-to-access locations.

So how do we in the humanitarian space make media drone teams part of the solution rather than part of the problem? How do we make them partners in these efforts? One way forward is to start a conversation with these media teams and their relevant networks. Perhaps we start with a few informal agreements and learn by doing. If anyone is interested in working with me on this and/or has any suggestions on how to make this happen, please do get in touch. Thanks!

Why Robots Are Flying Over Zanzibar and the Source of the Nile

An expedition in 1858 revealed that Lake Victoria was the source of the Nile. We found ourselves on the shores of Africa’s majestic lake this October, a month after a 5.9 magnitude earthquake struck Tanzania’s Kagera Region. Hundreds were injured and dozens killed. This was the biggest tragedy in decades for the peaceful lakeside town of Bukoba. The Ministry of Home Affairs invited WeRobotics to support the recovery and reconstruction efforts by carrying out aerial surveys of the affected areas. 

2016-10-10-08-14-57-hdr

The mission of WeRobotics is to build local capacity for the safe and effective use of appropriate robotics solutions. We do this by co-creating local robotics labs that we call Flying Labs. We use these Labs to transfer the professional skills and relevant robotics solutions to outstanding local partners. Our explicit focus on capacity building explains why we took the opportunity whilst in Kagera to train two Tanzanian colleagues. Khadija and Yussuf joined us from the State University of Zanzibar (SUZA). They were both wonderful to work with and quick learners too. We look forward to working with them and other partners to co-create our Flying Labs in Tanzania. More on this in a future post.

Aerial Surveys of Kagera Region After The Earthquake

We surveyed multiple areas in the region based on the priorities of our local partners as well as reports provided by local villagers. We used the Cumulus One UAV from our technology partner DanOffice to carry out the flights. The Cumulus has a stated 2.5 hour flight time and 50 kilometer radio range. We’re using software from our partner Pix4D to process the 3,000+ very high resolution images captured during our 2 days around Bukoba.

img_6753

Above, Khadija and Yussuf on the left with a local engineer and a local member of the community on the right, respectfully. The video below shows how the Cumulus takes off and lands. The landing is automatic and simply involves the UAV stalling and gently gliding to the ground. 

We engaged directly with local communities before our flights to explain our project and get their permissions to fly. Learn more about our Code of Conduct.

img_6807

Aerial mapping with fixed-wing UAVs can identify large-scale damage over large areas and serve as a good base map for reconstruction. A lot of the damage, however, can be limited to large cracks in walls, which cannot be seen with nadir (vertical) imagery. We thus flew over some areas using a Parrot Bebop2 to capture oblique imagery and to get closer to the damage. We then took dozens of geo-tagged images from ground-level with our phones in order to ground-truth the aerial imagery.

img_6964

We’re still processing the resulting imagery so the results below are simply the low resolution previews of one (out of three) surveys we carried out.

ortho1_bukoba

Both Khadija and Yussuf were very quick learners and a real delight to work with. Below are more pictures documenting our recent work in Kagera. You can follow all our trainings and projects live via our Twitter feed (@werobotics) and our Facebook page. Sincerest thanks to both Linx Global Intelligence and UR Group for making our work in Kagera possible. Linx provided the introduction to the Ministry of Home Affairs while the UR Group provided invaluable support on the logistics and permissions.

img_6827

Yussuf programming the flight plan of the Cumulus

img_6875

Khadija is setting up the Cumulus for a full day of flying around Bukoba area

img_6756

Khadija wants to use aerial robots to map Zanzibar, which is where she’s from

img_6787

Community engagement is absolutely imperative

img_6791

Local community members inspecting the Parrot’s Bebop2

From the shores of Lake Victoria to the coastlines of Zanzibar

Together with the outstanding drone team from the State University of Zanzibar, we mapped Jozani Forest and part of the island’s eastern coastline. This allowed us to further field-test our long-range platform and to continue our local capacity building efforts following our surveys near the Ugandan border. Here’s a picture-based summary of our joint efforts.

2016-10-14-09-09-48

Flying Labs Coordinator Yussuf sets up the Cumulus UAV for flight

2016-10-13-14-44-27-hdr

Turns out selfie sticks are popular in Zanzibar and kids love robots.

2016-10-14-10-01-25

Khairat from Team SUZA is operating the mobile air traffic control tower. Team SUZA uses senseFly eBees for other projects on the island.

2016-10-15-09-03-10

Another successful takeoff, courtesy of Flying Labs Coordinator Yussuf.

2016-10-15-11-11-20

We flew the Cumulus at a speed of 65km/h and at an altitude of 265m.

2016-10-15-13-11-13

The Cumulus flew for 2 hours, making this our longest UAV flight in Zanzibar so far.

2016-10-15-10-38-51-hdr

Khadija from Team SUZA explains to local villagers how and why she maps Zanzibar using flying robots.

2016-10-15-17-26-23

Tide starts rushing back in. It’s important to take the moon into account when mapping coastlines, as the tide can change drastically during a single flight and thus affect the stitching process.

The content above is cross-posted from WeRobotics.

How Can Digital Humanitarians Best Organize for Disaster Response?

I published a blog post with the same question in 2012. The question stemmed from earlier conversations I had at 10 Downing Street with colleague Duncan Watts from Microsoft Research. We subsequently embarked on a collaboration with the Standby Task Force (SBTF), a group I co-founded back in 2010. The SBTF was one of the early pioneers of digital humanitarian action. The purpose of this collaboration was to empirically explore the relationship between team size and productivity during crisis mapping efforts.

Pablo_UN_Map

Duncan and Team from Microsoft simulated the SBTF’s crisis mapping efforts in response to Typhoon Pablo in 2012. At the time, the United Nations Office for the Coordination of Humanitarian Affairs (UN/OCHA) had activated the Digital Humanitarian Network (DHN) to create a crisis map of disaster impact (final version pictured above). OCHA requested the map within 24 hours. While we could have deployed the SBTF using the traditional crowdsourcing approach as before, we decided to try something different: microtasking. This was admittedly a gamble on our part.

We reached out to the team at PyBossa to ask them to customize their micro-tasking platform so that we could rapidly filter through both images and videos of disaster damage posted on Twitter. Note that we had never been in touch with the PyBossa team before this (hence the gamble) nor had we ever used their CrowdCrafting platform (which was still very new at the time). But thanks to PyBossa’s quick and positive response to our call for help, we were able to launch this microtasking app several hours after OCHA’s request.

Fast forward to the present research study. We gave Duncan and colleagues at Microsoft the same database of tweets for their simulation experiment. To conduct this experiment and replicate the critical features of crisis mapping, they created their own “CrowdMapper” platform pictured below.

Screen Shot 2016-04-20 at 11.12.36 AM Screen Shot 2016-04-20 at 11.12.53 AM

The CrowdMapper experiments suggest that the positive effects of coordination between digital humanitarian volunteers, i.e., teams, dominate the negative effects of social loafing, i.e., volunteers working independently from others. In social psychology, “social loafing is the phenomenon of people exerting less effort to achieve a goal when they work in a group than when they work alone” (1). In the CrowdMapper exercise, the teams performed comparably to the SBTF deployment following Typhoon Pablo. This suggests that such experiments can “help solve practical problems as well as advancing the science of collective intelligence.”

Our MicroMappers deployments have always included a live chat (IM) feature in the user interface precisely to support collaboration. Skype has also been used extensively during digital humanitarian efforts and Slack is now becoming more common as well. So while we’ve actively promoted community building and facilitated active collaboration over the past 6+ years of crisis mapping efforts, we now have empirical evidence that confirms we’re on the right track.

The full study by Duncan et al. is available here. As they note vis-a-vis areas for future research, we definitely need more studies on the division of labor in crisis mapping efforts. So I hope they or other colleagues will pursue this further.

Many thanks to the Microsoft Team and to SBTF for collaborating on this applied research, one of the few that exist in the field of crisis mapping and digital humanitarian action.


The main point I would push back on vis-a-vis Duncan et al’s study is comparing their simulated deployment with the SBTF’s real-world deployment. The reason it took the SBTF 12 hours to create the map was precisely because we didn’t take the usual crowdsourcing approach. As such, most of the 12 hours was spent on reaching out to PyBossa, customizing their microtasking app, testing said app and then finally deploying the platform. The Microsoft Team also had the dataset handed over to them while we had to use a very early, untested version of the AIDR platform to collect and filter the tweets, which created a number of hiccups. So this too took time. Finally, it should be noted that OCHA’s activation came during early evening (local time) and I for one pulled an all-nighter that night to ensure we had a map by sunrise.

A 10 Year Vision: Future Trends in Geospatial Information Management

Screen Shot 2016-02-07 at 12.35.09 PM

The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) recently published their second edition of Future Trends in Geospatial Information Management. I blogged about the first edition here. Below are some of the excerpts I found interesting or noteworthy. The report itself is a 50-page document (PDF 7.1Mb).

  • The integration of smart technologies and efficient governance models will increase and the mantra of ‘doing more for less’ is more relevant than ever before.
  • There is an increasing tendency to bring together data from multiple sources: official statistics, geospatial information, satellite data, big data and crowdsourced data among them.
  • New data sources and new data collection technologies must be carefully applied to avoid a bias that favors countries that are wealthier and with established data infrastructures. The use of innovative tools might also favor those who have greater means to access technology, thus widening the gap between the ‘data poor’ and the ‘data rich’.
  • The paradigm of geospatial information is changing; no longer is it used just for mapping and visualization, but also for integrating with other data sources, data analytics, modeling and policy-making.
  • Our ability to create data is still, on the whole, ahead of our ability to solve complex problems by using the data.  The need to address this problem will rely on the development of both Big Data technologies and techniques (that is technologies that enable the analysis of vast quantities of information within usable and practical timeframes) and artificial intelligence (AI) or machine learning technologies that will enable the data to be processed more efficiently.
  • In the future we may expect society to make increasing use of autonomous machines and robots, thanks to a combination of aging population, 
rapid technological advancement in unmanned autonomous systems and AI, and the pure volume of data being beyond a human’s ability to process it.
  • Developments in AI are beginning to transform the way machines interact with the world. Up to now machines have mainly carried out well-defined tasks such as robotic assembly, or data analysis using pre-defined criteria, but we are moving into an age where machine learning will allow machines to interact with their environment in more flexible and adaptive ways. This is a trend we expect to 
see major growth in over the next 5 to 10 years as the technologies–and understanding of the technologies–become more widely recognized.
  • Processes based on these principles, and the learning of geospatial concepts (locational accuracy, precision, proximity etc.), can be expected to improve the interpretation of aerial and satellite imagery, by improving the accuracy with which geospatial features can be identified.
  • Tools may run persistently on continuous streams of data, alerting interested parties to new discoveries and events.  Another branch of AI that has long been of interest has been the expert system, in which the knowledge and experience of human experts 
is taught to a machine.
  • The principle of collecting data once only at the highest resolution needed, and generalizing ‘on the fly’ as required, can become reality.  Developments of augmented and virtual reality will allow humans to interact with data in new ways.
  • The future of data will not be the conflation of multiple data sources into a single new dataset, rather there will be a growth in the number of datasets that are connected and provide models to be used across the world.
  • Efforts should be devoted to integrating involuntary sensors– mobile phones, RFID sensors and so
on–which aside from their primary purpose may produce information regarding previously difficult to collect information. This leads to more real-time information being generated.
  • Many developing nations have leapfrogged in areas such as mobile communications, but the lack of core processing power may inhibit some from taking advantage of the opportunities afforded by these technologies.
  • Disaggregating data at high levels down to small area geographies. This will increase the need to evaluate and adopt alternative statistical modeling techniques to ensure that statistics can be produced at the right geographic level, whilst still maintaining the quality to allow them to be reported against.
  • The information generated through use of social media and the use of everyday devices will further reveal patterns and the prediction of behaviour. This is not a new trend, but as the use of social media 
for providing real-time information and expanded functionality increases it offers new opportunities for location based services.
  • There seems to have been
 a breakthrough from 2D to 3D information, and
 this is becoming more prevalent.

 Software already exists to process this information, and to incorporate the time information to create 4D products and services. It 
is recognized that a growth area over the next five to ten years will be the use of 4D information in a wide variety of industries.
  • 
 The temporal element is crucial to a number of applications such as emergency service response, for simulations and analytics, and the tracking of moving objects. 
 4D is particularly relevant in the context of real-time information; this has been linked to virtual reality technologies.
  • Greater coverage, quality and resolution has been achieved by the availability of both low-cost and affordable satellite systems, and unmanned aerial vehicles (UAVs). This has increased both the speed of collection and acquisition in remote areas, but also reduced the cost barriers of entry.
  • UAVs can provide real-time information to decision-makers on the ground providing, for example, information for disaster manage-ment. They are
 an invaluable tool when additional information 
is needed to improve vital decision making capabilities and such use of UAVs will increase.
  • The licensing of data in an increasingly online world is proving to be very challenging. There is a growth in organisations adopting simple machine-readable licences, but these have not resolved the issues to data. Emerging technologies such as web services and the growth of big data solutions drawn from multiple sources will continue to create challenges for the licensing of data.
  • A wider issue is the training and education of a broader community of developers and users of location-enabled content. At the same time there is a need for more automated approaches to ensuring the non-geospatial professional community get the right data at the right time. 
Investment in formal training in the use of geospatial data and its implementation is still indispensable.
  • Both ‘open’ and ‘closed’ VGI 
data play an important and necessary part of the wider data ecosystem.

UN Crisis Map of Fiji Uses Aerial Imagery (Updated)

Update 1: The Crisis Map below was produced pro bono by Tonkin + Taylor so they should be credited accordingly.

Update 2: On my analysis of Ovalau below, I’ve been in touch with the excellent team at Tonkin & Taylor. It would seem that the few images I randomly sampled were outliers since the majority of the images taken around Ovalau reportedly show damage, hence the reason for Tonkin & Taylor color-coding the island red. Per the team’s explanation: “[We] have gone through 40 or so photographs of Ovalau. The area is marked red because the majority of photographs meet the definition of severe, i.e.,: 1) More than 50% of all buildings sustaining partial loss of amenity/roof; and 2) More than 20% of damaged buildings with substantial loss of amenity/roof.” Big thanks to the team for their generous time and for their good work on this crisis map.


Fiji Crisis Map

Fiji recently experienced the strongest tropical cyclone in its history. Named Cyclone Winston, the Category 5 Cyclone unleashed 285km/h (180 mph) winds. Total damage is estimated at close to half-a-billion US dollars. Approximately 80% of the country’s population lost power; 40,000 people required immediate assistance; some 24,000 homes were damaged or destroyed leaving around 120,000 people in need of shelter assistance; 43 people tragically lost their lives.

As a World Bank’s consultant on UAVs (aerial robotics), I was asked to start making preparations for the possible deployment of a UAV team to Fiji should an official request be made. I’ve therefore been in close contact with the Civil Aviation Authority of Fiji; and several professional and certified UAV teams as well. The purpose of this humanitarian robotics mission—if requested and authorized by relevant authorities—would be to assess disaster damage in support of the Post Disaster Needs Assessment (PDNA) process. I supported a similar effort last year in neighboring Vanuatu after Cyclone Pam.

World Bank colleagues are currently looking into selecting priority sites for the possible aerial surveys using a sampling method that would make said sites representative of the disaster’s overall impact. This is an approach that we were unable to take in Vanuatu following Cyclone Pam due to the lack of information. As part of this survey sampling effort, I came across the United Nations Office for the Coordination of Humanitarian Affairs (UN/OCHA) crisis map below, which depicts areas of disaster damage.

Fiji Crisis Map 2

I was immediately struck by the fact that the main dataset used to assess the damage depicted on this map comes from (declassified) aerial imagery provided by the Royal New Zealand Air Force (RNZAF). Several hundred high-resolution oblique aerial images populate the crisis map along with dozens of ground-based photographs like the ones below. Note that the positional accuracy of the aerial images is +/- 500m (meaning not particularly accurate).

Fiji_2

Fiji_!

I reached out to OCHA colleagues in Fiji who confirmed that they were using the crisis map as one source of information to get a rough idea about which areas were the most affected.  What makes this data useful, according to OCHA, is that it had good coverage over a large area. In contrast, satellite imagery could only provide small snapshots of random villages which were not as useful for trying to understand the scale and scope of a disasters. The limited value added of satellite imagery was reportedly due to cloud cover, which is typical after atmospheric hazards like Cyclones.

Below is the damage assessment methodology used vis-a-vis the interpret the aerial imagery. Note that this preliminary assessment was not carried out by the UN but rather an independent company.

Fiji Crisis Map 3

  • Severe Building Damage (Red): More than 50% of all buildings sustaining partial loss of amenity/roof or more than 20% of damaged buildings with substantial loss of amenity/roof.
  • Moderate Building Damage (Orange): Damage generally exceeding minor [damage] with up to 50% of all buildings sustaining partial loss of amenity/roof and up to 20% of damaged buildings with substantial loss of amenity/roof.
  • Minor Building Damage (Blue):  Up to 5% of all buildings with partial loss of amenity/roof or up to 1% of damaged buildings with substantial loss of amenity/roof.

The Fiji Crisis Map includes an important note: The primary objective of this preliminary assessment was to communicate rapid high-level building damage trends on a regional scale. This assessment has been undertaken on a regional scale (generally exceeding 100 km2) and thus may not accurately reflect local variation in damage. I wish more crisis maps provided qualifiers like the above. That said, while I haven’t had the time to review the hundreds of aerial images on the crisis map to personally assess the level of damage depicted in each, I was struck by the assessment of Ovalau, which I selected at random.

Fiji Crisis Map 4

As you’ll note, the entire island is color coded as severe damage. But I selected several aerial images at random and none showed severe building damage. The images I reviewed are included below.

Ovalau0 Ovalau1 Ovalau2 Ovalau3

This last one may seem like there is disaster damage but a closer inspection by zooming in reveals that the vast majority of buildings are largely intact.

Ovalau5

I shall investigate this further to better understand the possible discrepancy. In any event, I’m particularly pleased to see the UN (and others) make use of aerial imagery in their disaster damage assessment efforts. I’d also like to see the use of aerial robotics for the collection of very high resolution, orthorectified aerial imagery. But using these robotics solutions to their full potential for damage assessment purposes requires regulatory approval and robust coordination mechanisms. Both are absolutely possible as we demonstrated in neighboring Vanuatu last year.

Increasing the Reliability of Aerial Imagery Analysis for Damage Assessments

In March 2015, I was invited by the World Bank to spearhead an ambitious humanitarian aerial robotics (UAV) mission to Vanuatu following Cyclone Pam, a devastating Category 5 Cyclone. This mission was coordinated with Heliwest and X-Craft, two outstanding UAV companies who were identified through the Humanitarian UAV Network (UAViators) Roster of Pilots. You can learn more about the mission and see pictures here. Lessons learned from this mission (and many others) are available here.

Screen Shot 2016-02-22 at 6.12.21 PM

The World Bank and partners were unable to immediately analyze the aerial imagery we had collected because they faced a Big Data challenge. So I suggested the Bank activate the Digital Humanitarian Network (DHN) to request digital volunteer assistance. As a result, Humanitarian OpenStreetMap (HOT) analyzed some of the orthorectified mosaics and MicroMappers focused on analyzing the oblique images (more on both here).

This in turn produced a number of challenges. To cite just one, the Bank needed digital humanitarians to identify which houses or buildings were completely destroyed, versus partially damaged versus largely intact. But there was little guidance on how to determine what constituted fully destroyed versus partially damaged or what such structures in Vanuatu look like when damaged by a Cyclone. As a result, data quality was not as high as it could have been. In my capacity as consultant for the World Bank’s UAVs for Resilience Program, I decided to do something about this lack of guidelines for imagery interpretation.

I turned to my colleagues at the Harvard Humanitarian Initiative (where I had previously co-founded and co-directed the HHI Program on Crisis Mapping) and invited them to develop a rigorous guide that could inform the consistent interpretation of aerial imagery of disaster damage in Vanuatu (and nearby Island States). Note that Vanuatu is number one on the World Bank’s Risk Index of most disaster-prone countries. The imagery analysis guide has just published (PDF) by the Signal Program on Human Security and Technology at HHI.

Big thanks to the HHI team for having worked on this guide and for my Bank colleagues and other reviewers for their detailed feedback on earlier drafts. The guide is another important step towards improving data quality for satellite and aerial imagery analysis in the context of damage assessments. Better data quality is also important for the use of Artificial Intelligence (AI) and computer vision as explained here. If a humanitarian UAV mission does happen in response to the recent disaster in Fiji, then the guide may also be of assistance there depending on how similar the building materials and architecture is. For now, many thanks to HHI for having produced this imagery guide.