Tag Archives: Capacity

Humanitarian Robotics, Murphy’s Law and What To Do About It

Like any other technology used in humanitarian settings, robotics solutions can break down when you need them the most. A few months ago, for example, my team and I at WeRobotics were in the middle of the Peruvian Amazon Rainforest with a relatively expensive cargo drone that could hardly fly without become dangerously unstable. Murphy’s law is alive and well in the Amazon as it is in other places we work in like Tanzania, Nepal, Haiti and Maldives. So what to do?

Introducing emerging technologies in aid and development projects in the global South comes with a range of challenges and responsibilities. What’s the point of transferring robotics solutions to local partners if these platforms break and can’t be repaired locally? In one country we work in, for example, a major international organization has purchased about a dozen flying robots, and every few months at least one of these UAVs has to be shipped back to Europe for repairs. Not only does this really add up in terms of shipping costs, but it also creates significant project delays when half your fleet is out of the country for months on end. 

In Nepal last year, our Flying Labs team were out of propellors which meant we had to ship some new ones in from Europe. This is expensive and it didn’t work: the propellors were returned to us 2 months later because the shipping service had not found the address of our local Flying Labs Coordinator. (Yes, we’re exploring 3D printer solutions, but these break as well). In Tanzania, the UAV pictured above has seen a frustrating number of technical and software failures, which has prevented our Flying Labs from actually completing important projects. That particular UAV has had to be shipped back to Europe twice for repairs, costing both time and money.

So what to do? Going with cheaper, “DIY” UAVs doesn’t necessarily solve the issue. These don’t tend to be as robust or easy to use even if they are more expendable than costly models. That said, the most expensive UAV in our Flying Labs fleet has been the most problematic in terms of repeated technical failures. Sure, we could buy more reliable (costly) UAVs and have backups just in case but this does require more funding, and these UAVs will inevitably require repairs at some point too. So this “solution” doesn’t actually address the underlying issue: the dependency we create when introducing these new robotics solutions.

Obviously we need to train our Flying Labs to repair and service these UAVs locally. We’ve started doing this, and while our Labs won’t become maintenance maestros overnight, I’m personally really excited that we’re moving forward on this. Instead of shipping UAVs back to Europe for repairs, we’ll eventually be able to repair most technical problems onsite at our Tanzania Flying Labs, for example. Besides the obvious advantages (cost-savings and time-savings), this service will generate an important source of income for our local Flying Labs staff. And given that the mandate of our Labs is to create local jobs and incubate local businesses that offer robotics as service, one such business could well specialize in repairs and maintenance. 

So when international organizations and companies in the country or region in question need their UAVs fixed, they could pay our Labs to carry out repairs instead of shipping then back to manufacturers in Europe or the US. There is a small catch, however. By repairing the UAVs ourselves, we run the risk of voiding the warranty on the UAV. So we’re starting with small, common repairs that don’t pose this problem. But in the long run, we want to have leading UAV manufacturers certify our Flying Labs as official partners for repairs. This too won’t happen overnight. First we first need to prove ourselves with basic repairs and clearly demonstrate the savings in cost and time that UAV operators gain from having their UAVs fixed at one of our local labs.

We’re heading back to Tanzania in a few weeks to provide additional training on how to repair these technologies locally. If you’d like to help us train our Flying Labs on UAV/drone repairs and maintenance, please do get in touch. Thanks!

This is What Happens When You Send Flying Robots to Nepal

In September 2015, we were invited by our partner Kathmandu University to provide them and other key stakeholders with professional hands-on training to help them scale the positive impact of their humanitarian efforts following the devastating earthquakes. More specifically, our partners were looking to get trained on how to use aerial robotics solutions (drones) safely and effectively to support their disaster risk reduction and early recovery efforts. So we co-created Kathmandu Flying Labs to ensure the long-term sustainability of our capacity building efforts. Kathmandu Flying Labs is kindly hosted by our lead partner, Kathmandu University (KU). This is already well known. What is hardly known, however, is what happened after we left the country.

Screen Shot 2015-11-02 at 5.17.58 PM

Our Flying Labs are local innovation labs used to transfer both relevant skills and appropriate robotics solutions sustainably to outstanding local partners who need these the most. The co-creation of these Flying Labs include both joint training and applied projects customized to meet the specific needs & priorities of our local partners. In Nepal, we provided both KU and Kathmandu Living Labs (KLL) with the professional hands-on training they requested. What’s more, thanks to our Technology Partner DJI, we were able to transfer 10 DJI Phantoms (aerial robotics solutions) to our Nepali partners (6 to KU and 4 to KLL). In addition, thanks to another Technology Partner, Pix4D, we provided both KU and KLL with free licenses of the Pix4D software and relevant training so they could easily process and analyze the imagery they captured using their DJI platforms. Finally, we carried out joint aerial surveys of Panga, one of the towns hardest-hit by the 2015 Earthquake. Joint projects are an integral element of our capacity building efforts. These projects serve to reinforce the training and enable our local partners to create immediate added value using aerial robotics. This important phase of Kathmandu Flying Labs is already well documented.

WP15

What is less known, however, is what KU did with the technology and software after we left Nepal. Indeed, the results of this next phase of the Flying Labs process (during which we provide remote support as needed) has not been shared widely, until now. KU’s first order of business was to actually finish the joint project we had started with them in Panga. It turns out that our original aerial surveys there were actually incomplete, as denoted by the red circle below.

Map_Before

But because we had taken the time to train our partners and transfer both our skills and the robotics technologies, the outstanding team at KU’s School of Engineering returned to Panga to get the job done without needing any further assistance from us at WeRobotics. They filled the gap:

Map_After

The KU team didn’t stop there. They carried out a detailed aerial survey of a nearby hospital to create the 3D model below (at the hospital’s request). They also created detailed 3D models of the university and a nearby temple that had been partially damaged by the 2015 earthquakes. Furthermore, they carried out additional disaster damage assessments in Manekharka and Sindhupalchowk, again entirely on their own.

Yesterday, KU kindly told us about their collaboration with the World Wildlife Fund (WWF). Together, they are conducting a study to determine the ecological flow of Kaligandaki river, one of the largest rivers in Nepal. According to KU, the river’s ecosystem is particularly “complex as it includes aquatic invertebrates, flora, vertebrates, hydrology, geo-morphology, hydraulics, sociology-cultural and livelihood aspects.” The Associate Dean at KU’s School of Engineering wrote “We are deploying both traditional and modern technology to get the information from ground including UAVs. In this case we are using the DJI Phantoms,” which “reduced largely our field investigation time. The results are interesting and promising.” I look forward to sharing these results in a future blog post.

kali-gandaki-river

Lastly, KU’s Engineering Department has integrated the use of the robotics platforms directly into their courses, enabling Geomatics Engineering students to use the robots as part of their end-of-semester projects. In sum, KU has done truly outstanding work following our capacity building efforts and deserve extensive praise. (Alas, it seems that KLL has made little to no use of the aerial technologies or the software since our training 10 months ago).

Several months after the training in Nepal, we were approached by a British company that needed aerial surveys of specific areas for a project that the Nepal Government had contracted them to carry out. So they wanted to hire us for this project. We proposed instead that they hire our partners at Kathmandu Flying Labs since the latter are more than capable to carry out the surveys themselves. In other words, we actively drive business opportunities to Flying Labs partners. Helping to create local jobs and local businesses around robotics as a service is one of our key goals and the final phase of the Flying Labs framework.

So when we heard last week that USAID’s Global Development Lab was looking to hire a foreign company to carry out aerial surveys for a food security project in Nepal, we jumped on a call with USAID to let them know about the good work carried out by Kathmandu Flying Labs. We clearly communicated to our USAID colleagues that there are perfectly qualified Nepali pilots who can carry out the same aerial surveys. USAID’s Development Lab will be meeting with Kathmandu Flying Labs during their next visit in September.

thumb_IMG_4591_1024

On a related note, one of the participants who we trained in September was hired soon after by Build Change to support the organization’s shelter programs by producing Digital Surface Models (DSMs) from aerial images captured using DJI platforms. More recently, we heard from another student who emailed us with the following: “I had an opportunity to participate in the Humanitarian UAV Training mission in Nepal. It’s because of this training I was able learn how to fly drones and now I can conduct aerial Survey on my own with any hardware.  I would like to thank you and your team for the knowledge transfer sessions.”

This same student (who graduated from KU) added: “The workshop that your team did last time gave us the opportunity to learn how to fly and now we are handling some professional works along with major research. My question to you is ‘How can young graduates from developing countries like ours strengthen their capacity and keep up with their passion on working with technology like UAVs […]? The immediate concern for a graduate in Nepal is a simple job where he can make some money for him and prove to his family that he has done something in return for all the investments they have been doing upon him […]’.

KU campus sign

This is one of several reasons why our approach at WeRobotics is not limited to scaling the positive impact of local humanitarian, development, environmental and public health projects. Our demand-driven Flying Labs model goes the extra (aeronautical) mile to deliberately create local jobs and businesses. Our Flying Labs partners want to make money off the skills and technologies they gain from WeRobotics. They want to take advantage of the new career opportunities afforded by these new AI-powered robotics solutions. And they want their efforts to be sustainable.

In Nepal, we are now interviewing the KU graduate who posed the question above because we’re looking to hire an outstanding and passionate Coordinator for Kathmandu Flying Labs. Indeed, there is much work to be done as we are returning to Nepal in coming months for three reasons: 1) Our local partners have asked us to provide them with the technology and training they need to carry out large scale mapping efforts using long-distance fixed-wing platforms; 2) A new local partner needs to create very high-resolution topographical maps of large priority areas for disaster risk reduction and planning efforts, which requires the use of a fixed-wing platform; 3) We need to meet with KU’s Business Incubation Center to explore partnership opportunities since we are keen to help incubate local businesses that offer robotics as a service in Nepal.