Tag Archives: University

This is What Happens When You Send Flying Robots to Nepal

In September 2015, we were invited by our partner Kathmandu University to provide them and other key stakeholders with professional hands-on training to help them scale the positive impact of their humanitarian efforts following the devastating earthquakes. More specifically, our partners were looking to get trained on how to use aerial robotics solutions (drones) safely and effectively to support their disaster risk reduction and early recovery efforts. So we co-created Kathmandu Flying Labs to ensure the long-term sustainability of our capacity building efforts. Kathmandu Flying Labs is kindly hosted by our lead partner, Kathmandu University (KU). This is already well known. What is hardly known, however, is what happened after we left the country.

Screen Shot 2015-11-02 at 5.17.58 PM

Our Flying Labs are local innovation labs used to transfer both relevant skills and appropriate robotics solutions sustainably to outstanding local partners who need these the most. The co-creation of these Flying Labs include both joint training and applied projects customized to meet the specific needs & priorities of our local partners. In Nepal, we provided both KU and Kathmandu Living Labs (KLL) with the professional hands-on training they requested. What’s more, thanks to our Technology Partner DJI, we were able to transfer 10 DJI Phantoms (aerial robotics solutions) to our Nepali partners (6 to KU and 4 to KLL). In addition, thanks to another Technology Partner, Pix4D, we provided both KU and KLL with free licenses of the Pix4D software and relevant training so they could easily process and analyze the imagery they captured using their DJI platforms. Finally, we carried out joint aerial surveys of Panga, one of the towns hardest-hit by the 2015 Earthquake. Joint projects are an integral element of our capacity building efforts. These projects serve to reinforce the training and enable our local partners to create immediate added value using aerial robotics. This important phase of Kathmandu Flying Labs is already well documented.

WP15

What is less known, however, is what KU did with the technology and software after we left Nepal. Indeed, the results of this next phase of the Flying Labs process (during which we provide remote support as needed) has not been shared widely, until now. KU’s first order of business was to actually finish the joint project we had started with them in Panga. It turns out that our original aerial surveys there were actually incomplete, as denoted by the red circle below.

Map_Before

But because we had taken the time to train our partners and transfer both our skills and the robotics technologies, the outstanding team at KU’s School of Engineering returned to Panga to get the job done without needing any further assistance from us at WeRobotics. They filled the gap:

Map_After

The KU team didn’t stop there. They carried out a detailed aerial survey of a nearby hospital to create the 3D model below (at the hospital’s request). They also created detailed 3D models of the university and a nearby temple that had been partially damaged by the 2015 earthquakes. Furthermore, they carried out additional disaster damage assessments in Manekharka and Sindhupalchowk, again entirely on their own.

Yesterday, KU kindly told us about their collaboration with the World Wildlife Fund (WWF). Together, they are conducting a study to determine the ecological flow of Kaligandaki river, one of the largest rivers in Nepal. According to KU, the river’s ecosystem is particularly “complex as it includes aquatic invertebrates, flora, vertebrates, hydrology, geo-morphology, hydraulics, sociology-cultural and livelihood aspects.” The Associate Dean at KU’s School of Engineering wrote “We are deploying both traditional and modern technology to get the information from ground including UAVs. In this case we are using the DJI Phantoms,” which “reduced largely our field investigation time. The results are interesting and promising.” I look forward to sharing these results in a future blog post.

kali-gandaki-river

Lastly, KU’s Engineering Department has integrated the use of the robotics platforms directly into their courses, enabling Geomatics Engineering students to use the robots as part of their end-of-semester projects. In sum, KU has done truly outstanding work following our capacity building efforts and deserve extensive praise. (Alas, it seems that KLL has made little to no use of the aerial technologies or the software since our training 10 months ago).

Several months after the training in Nepal, we were approached by a British company that needed aerial surveys of specific areas for a project that the Nepal Government had contracted them to carry out. So they wanted to hire us for this project. We proposed instead that they hire our partners at Kathmandu Flying Labs since the latter are more than capable to carry out the surveys themselves. In other words, we actively drive business opportunities to Flying Labs partners. Helping to create local jobs and local businesses around robotics as a service is one of our key goals and the final phase of the Flying Labs framework.

So when we heard last week that USAID’s Global Development Lab was looking to hire a foreign company to carry out aerial surveys for a food security project in Nepal, we jumped on a call with USAID to let them know about the good work carried out by Kathmandu Flying Labs. We clearly communicated to our USAID colleagues that there are perfectly qualified Nepali pilots who can carry out the same aerial surveys. USAID’s Development Lab will be meeting with Kathmandu Flying Labs during their next visit in September.

thumb_IMG_4591_1024

On a related note, one of the participants who we trained in September was hired soon after by Build Change to support the organization’s shelter programs by producing Digital Surface Models (DSMs) from aerial images captured using DJI platforms. More recently, we heard from another student who emailed us with the following: “I had an opportunity to participate in the Humanitarian UAV Training mission in Nepal. It’s because of this training I was able learn how to fly drones and now I can conduct aerial Survey on my own with any hardware.  I would like to thank you and your team for the knowledge transfer sessions.”

This same student (who graduated from KU) added: “The workshop that your team did last time gave us the opportunity to learn how to fly and now we are handling some professional works along with major research. My question to you is ‘How can young graduates from developing countries like ours strengthen their capacity and keep up with their passion on working with technology like UAVs […]? The immediate concern for a graduate in Nepal is a simple job where he can make some money for him and prove to his family that he has done something in return for all the investments they have been doing upon him […]’.

KU campus sign

This is one of several reasons why our approach at WeRobotics is not limited to scaling the positive impact of local humanitarian, development, environmental and public health projects. Our demand-driven Flying Labs model goes the extra (aeronautical) mile to deliberately create local jobs and businesses. Our Flying Labs partners want to make money off the skills and technologies they gain from WeRobotics. They want to take advantage of the new career opportunities afforded by these new AI-powered robotics solutions. And they want their efforts to be sustainable.

In Nepal, we are now interviewing the KU graduate who posed the question above because we’re looking to hire an outstanding and passionate Coordinator for Kathmandu Flying Labs. Indeed, there is much work to be done as we are returning to Nepal in coming months for three reasons: 1) Our local partners have asked us to provide them with the technology and training they need to carry out large scale mapping efforts using long-distance fixed-wing platforms; 2) A new local partner needs to create very high-resolution topographical maps of large priority areas for disaster risk reduction and planning efforts, which requires the use of a fixed-wing platform; 3) We need to meet with KU’s Business Incubation Center to explore partnership opportunities since we are keen to help incubate local businesses that offer robotics as a service in Nepal.

Data Science for Social Good and Humanitarian Action

My (new) colleagues at the University of Chicago recently launched a new and exciting program called “Data Science for Social Good”. The program, which launches this summer, will bring together dozens top-notch data scientists, computer scientists an social scientists to address major social challenges. Advisors for this initiative include Eric Schmidt (Google), Raed Ghani (Obama Administration) and my very likable colleague Jake Porway (DataKind). Think of “Data Science for Social Good” as a “Code for America” but broader in scope and application. I’m excited to announce that QCRI is looking to collaborate with this important new program given the strong overlap with our Social Innovation Vision, Strategy and Projects.

My team and I at QCRI are hoping to mentor and engage fellows throughout the summer on key humanitarian & development projects we are working on in partnership with the United Nations, Red Cross, World Bank and others. This would provide fellows with the opportunity to engage in  “real world” challenges that directly match their expertise and interests. Second, we (QCRI) are hoping to replicate this type of program in Qatar in January 2014.

Why January? This will give us enough time to design the new program based on the result of this summer’s experiment. More importantly, perhaps, it will be freezing in Chicago ; ) and wonderfully warm in Doha. Plus January is an easier time for many students and professionals to take “time off”. The fellows program will likely be 3 weeks in duration (rather than 3 months) and will focus on applying data science to promote social good projects in the Arab World and beyond. Mentors will include top Data Scientists from QCRI and hopefully the University of Chicago. We hope to create 10 fellowship positions for this Data Science for Social Good program. The call for said applications will go out this summer, so stay tuned for an update.

bio

Crisis Tweets: Natural Language Processing to the Rescue?

My colleagues at the University of Colorado, Boulder, have been doing some very interesting applied research on automatically extracting “situational awareness” from tweets generated during crises. As is increasingly recognized by many in the humanitarian space, Twitter can at times be an important source of relevant information. The challenge is to make sense of a potentially massive number of crisis tweets in near real-time to turn this information into situational awareness.

Using Natural Language Processing (NLP) and Machine Learning (ML), Colorado colleagues have developed a “suite of classifiers to differentiate tweets across several dimensions: subjectivity, personal or impersonal style, and linguistic register (formal or informal style).” They suggest that tweets contributing to situational awareness are likely to be “written in a style that is objective, impersonal, and formal; therefore, the identification of subjectivity, personal style and formal register could provide useful features for extracting tweets that contain tactical information.” To explore this hypothesis, they studied the follow four crisis events: the North American Red River floods of 2009 and 2010, the 2009 Oklahoma grassfires, and the 2010 Haiti earthquake.

The findings of this study were presented at the Association for the Advancement of Artificial Intelligence. The team from Colorado demonstrated that their system, which automatically classifies Tweets that contribute to situational awareness, works particularly well when analyzing “low-level linguistic features,” i.e., word-frequencies and key-word search. Their analysis also showed that “linguistically-motivated features including subjectivity, personal/impersonal style, and register substantially improve system performance.” In sum, “these results suggest that identifying key features of user behavior can aid in predicting whether an individual tweet will contain tactical information. In demonstrating a link between situational awareness and other markable characteristics of Twitter communication, we not only enrich our classification model, we also enhance our perspective of the space of information disseminated during mass emergency.”

The paper, entitled: “Natural Language Processing to the Rescue? Extracting ‘Situational Awareness’ Tweets During Mass Emergency,” details the findings above and is available here. The study was authored by Sudha Verma, Sarah Vieweg, William J. Corvey, Leysia Palen, James H. Martin, Martha Palmer, Aaron Schram and Kenneth M. Anderson.

Disaster Response, Self-Organization and Resilience: Shocking Insights from the Haiti Humanitarian Assistance Evaluation

Tulane University and the State University of Haiti just released a rather damming evaluation of the humanitarian response to the 2010 earthquake that struck Haiti on January 12th. The comprehensive assessment, which takes a participatory approach and applies a novel resilience framework, finds that despite several billion dollars in “aid”, humanitarian assistance did not make a detectable contribution to the resilience of the Haitian population and in some cases increased certain communities’ vulnerability and even caused harm. Welcome to supply-side humanitarian assistance directed by external actors.

“All we need is information. Why can’t we get information?” A quote taken from one of many focus groups conducted by the evaluators. “There was little to no information exchange between the international community tasked with humanitarian response and the Haitian NGOs, civil society or affected persons / communities themselves.” Information is critical for effective humanitarian assistance, which should include two objectives: “preventing excess mortality and human suffering in the immediate, and in the longer term, improving the community’s ability to respond to potential future shocks.” This longer term objective thus focuses on resilience, which the evaluation team defines as follows:

“Resilience is the capacity of the affected community to self-organize, learn from and vigorously recover from adverse situations stronger than it was before.”

This link between resilience and capacity for self-organization is truly profound and incredibly important. To be sure, the evaluation reveals that “the humani-tarian response frequently undermined the capacity of Haitian individuals and organizations.” This completely violates the Hippocratic Oath of Do No Harm. The evaluators thus “promote the attainment of self-sufficiency, rather than the ongoing dependency on standard humanitarian assistance.” Indeed, “focus groups indicated that solutions to help people help themselves were desired.”

I find it particularly telling that many aid organizations interviewed for this assessment were reluctant to assist the evaluators in fully capturing and analyzing resource flows, which are critical for impact evaluation. “The lack of transparency in program dispersal of resources was a major constraint in our research of effective program evaluation.” To this end, the evaluation team argue that “by strengthening Haitian institutions’ ability to monitor and evaluate, Haitians will more easily be able to track and monitor international efforts.”

I completely disagree with this remedy. The institutions are part of the problem, and besides, institution-building takes years if not decades. To assume there is even political will and the resources for such efforts is at best misguided. If resilience is about strengthening the capacity of affected communities to self-organize, then I would focus on just that, applying existing technologies and processes that both catalyze and facilitate demand-side, people-centered self-organization. My previous blog post on “Technology and Building Resilient Societies to Mitigate the Impact of Disasters” elaborates on this point.

In sum, “resilience is the critical link between disaster and development; monitoring it will ensure that relief efforts are supporting, and not eroding, household and community capabilities.” This explains why crowdsourcing and data mining efforts like those of Ushahidi, HealthMap and UN Global Pulse are important for disaster response, self-organization and resilience.