Tag Archives: Crisis Mapping

Research Agenda for Visual Analytics

I just finished reading “Illuminating the Path: The Research and Development Agenda for Virtual Analytics.” The National Visualization and Analytics Center (NVACs) published the 200-page book in 2004 and the volume is absolutely one of the best treaties I’ve come across on the topic yet. The purpose of this series of posts that follow is to share some highlights and excerpts relevant for crisis mapping.

NVACcover

Co-edited by James Thomas and Kristin Cook,  the book focuses specifically on homeland security but there are numerous insights to be gained on how “virtual analytics” can also illuminate the path for crisis mapping analytics. Recall that the field of conflict early warning originated in part from World War II and  the lack of warning during Pearl Harbor.

Several coordinated systems for the early detection of a Soviet bomber attack on North America were set up in the early days of the Cold War. The Distant Early Warning Line, or Dew Line, was the most sophisticated of these. The point to keep in mind is that the national security establishment is often in the lead when it comes to initiatives that can also be applied for humanitarian purposes.

The motivation behind the launching of NVACs and this study was 9/11. In my opinion, this volume goes a long way to validating the field of crisis mapping. I highly recommend it to colleagues in both the humanitarian and human rights communities. In fact, the book is directly relevant to my current consulting work with the UN’s Threat and Risk Mapping Analysis (TRMA) project in the Sudan.

So this week, iRevolution will be dedicated to sharing daily higlights from the NVAC study. Taken together, these posts will provide a good summary of the rich and in-depth 200-page study. So check back here post for live links to NVAC highlights:

Part 1: Visual Analytics

Part 2: Data Flooding and Platform Scarcity

Part 3: Data Tetris and Information Synthesis

Part 4: Automated Analysis and Uncertainty Visualized

Part 5: Data Visualization and Interactive Interface Design

Part 6: Mobile Technologies and Collaborative Analytics

Part 7: Towards a Taxonomy of Visual Analytics

Note that the sequence above does not correspond to specific individual chapters in the NVAC study. This structure for the summary is what made most sense.

Patrick Philippe Meier

GeoSurveillance for Crisis Mapping Analytics

Having blogged at length on the rationale for Crisis Mapping Analytics (CMA), I am now interested in assessing the applicability of existing tools for crisis mapping vis-a-vis complex humanitarian emergencies.

In this blog post, I review an open-source software package called GeoSurveillance that combines spatial statistical techniques and GIS routines to perform tests for the detection and monitoring of spatial clustering.

The post is based on the new peer-reviewed article “GeoSurveillance: a GIS-based system for the detection and monitoring of spatial clusters” published in the Journal of Geographical Systems and authored by Ikuho Yamada, Peter Rogerson and Gyoungju Lee.

Introduction

The detection of spatial clusters—testing the null hypothesis of spatial randomness—is a key focus of spatial analysis. My first research project in this area dates back to 1996, when I wrote a software algorithm in C++ to determine the randomness (or non-randomness) of stellar distributions.

stars

The program would read a graphics file of a high-quality black-and-white image of a stellar distribution (that I had scanned from a rather expensive book) and run a pattern analysis procedure to determine what constituted a star and then detect them. Note that the stars were of various sizes and resolutions, with many overlapping in part.

Once the stars were detected, I manually approximated the number of stars in the stellar distributions to evaluate the reliability of my algorithm. The program would then assign (x, y) coordinates to each star. I compared this series of numbers with a series of pseudo-random numbers that I generated independently.

Using the Kolmogorov-Smirnov test in two-dimensions, I could then test the probability that the series of (x, y) coordinates pseudo-random numbers were samples that came from the same set.

Retrospective vs Prospective Analysis

This type of spatial cluster analysis on stellar distributions is retrospective and the majority of methods developed to date belong to this class of tests.

The other class of spatial cluster detection is called prospective testing. This testing is designed for time-series data that is updated over time and test statistics are computed when new data becomes available. “While retrospective tests focus on a static aspect of spatial patterns, prospective tests take into account their dynamic nature and attempt to find new, emergent clusters as quickly as possible.”

There has been a surge of interest in this prospective approach following the anthrax attacks of 2001 and the perceived threat of bioterrorism since. But as the authors of the GeoSurveillance study note, prospective monitoring approaches have broader application, “including the detection of outbreaks of food poisoning and infectious diseases and the detection of emergent crime hotspots.” And I would add crisis mapping for complex humanitarian emergencies.

Very little work has been done using retrospective analysis for crisis mapping and even less using prospective techniques. Both are equally important. The former is critical if we want to have a basis (and indeed baseline) to know what deviations and patterns to look for. The former is important since as humanitarian practitioners and policy makers, we are interested in operational conflict prevention.

Spatial Analysis Software

While several GIS software packages provide functionalities for retrospective analysis of spatial patterns, “few provide for prospective analysis,” with the notable exception of SaTScan, which enables both applications. SaTScan does has two drawbacks, however.

The first is that “prospective analysis in SaTScan is not adjusted in a statistically rigorous manner for repeated time-periodic tests conducted as new data become available.” Secondly, the platform “does not offer any GIS functionality for quick visual assessment of detected clusters.”

What is needed is a platform that provides a convenient graphical user-interface (GUI) that allows users to identify spatial clusters both statistically and visually. GeoSurveillance seeks to do just this.

Introducing GeoSurveillance

This spatial analysis software consists of three components: a cluster detection and monitoring component, a GIS component and a support tool component as depicted below.

GeoSurveillance

  • “The cluster detection and monitoring component is further divided into retrospective and prospective analysis tools, each of which has a corresponding user-interface where parameters and options for the analysis are to be set. When the analysis is completed, the user-interfaces also provide a textual and/or graphical summary of results.”
  • “The GIS component generates map representation of the results, where basic GIS functionalities such as zoom in/out, pan, and identify are available. For prospective analysis, the resulting map representation is updated every time a statistical computation for a time unit is completed so that spatial patterns changing over time can be visually assessed as animation.”
  • “The support tool component provides various auxiliary tools for user.”

The table below presents a summary (albeit not exhaustive) of statistical tests for cluster detection. The methods labeled in bold are currently available within GeoSurveillance.

GeoSurveillance2

GeoSurveillance uses the local score statistic for retrospective analysis and applies the univariate cumulative sum (cusum) method. Cusum methods are familiar to public health professionals since they are often applied to public health monitoring.

Both methods are somewhat involved mathematically speaking so I won’t elaborate on them here. Suffice it to say that the complexity of spatial analysis techniques needs to be “hidden” from the average user if this kind of platform is to be used by humanitarian practitioners in the field.

Applying GeoSurveillance

The authors Yamada et. al used the platform to carry out a particularly interesting study of low birth weight (LBW) incidence data in Los Angeles, California.

Traditional studies “on LBW have focused on individual-level risk factors such as race/ethnicity, maternal age, maternal education, use of prenatal care, smoking and other substance abuse during pregnancy.” However, such individual factors have had little ability to explain the risk of LBW. To this end, “increasing attention has been directed to neighborhood-level risk factors including […] racial/ethnic composition, economic status, crime rate, and population growth trend.”

The authors of the GeoSurveillance study thus hypothesize that “the risk of LBW incidence and its change over time have non-random spatial patterns reflecting background distributions of neighborhood-level risk factors.” The results of the retrospective and prospective analysis using GeoSurveillance is available both in tabular and map formats. The latter format is displayed and interpreted below.

GeoSurveillance3

Using GeoSurveillance’s retrospective analysis functionality enable the authors to automatically detect high risk areas of LWB (marked in red) as well as the zone with the highest abnormal incidents of LBW (marked in yellow). The maps above indicate that a large concentration of neighborhoods with high risk of LBW are found “near downtown Los Angeles extending toward the northwest, and three smaller ones in the eastern part of the county.”

GeoSurveillance4

Carrying out prospective analysis on the LWB data enabled the authors to conclude that high the risk of LBW “used to be concentrated in particular parts of the county but is now more broadly spread throughout the county.” This result now provides the basis for further investigation to “identify individual- and neighborhood-level factors that relate to this change in the spatial distribution of the LBW risk.”

Conclusion

The developers of GeoSurveillance plan to implement more methods in the next version, especially for prospective analysis given the limited availability of such methods in other GIS software. The GeoSurveillance software as well as associated documentation and sample datasets can be downloaded here.

I have downloaded the software myself and will start experimenting shortly with some Ushahidi and/or PRIO data if possible. Stay tuned for an update.

Patrick Philippe Meier

Mobile Crisis Mapping (MCM)

I first blogged about Mobile Crisis Mapping (MCM) back in October 2008 and several times since. The purpose of this post to put together the big picture. What do I mean by MCM? Why is it important? And how would I like to see MCM evolve?

Classical MCM

When I coined the term Mobile Crisis Mapping last October, I wrote that MCM was the next logical step in the field of crisis mapping. One month later, at the first Crisis Mappers Meeting, I emphasized the need to think of maps as communication tools and once again referred to MCM. In my posts on the Crisis Mapping Conference Proposal and A Brief History of Crisis Mapping, I referred to MCM but only in passing.

More recently, I noted the MCM component of the UN’s Threat and Risk Mapping (TRMA) project in the Sudan and referred to two projects presented at the ICTD2009 conference in Doha—one on quality of data collected using mobile phones and the second on a community-based mapping iniative called Folksomaps.

So what is Mobile Crisis Mapping? The most obvious answer is that MCM is the collection of georeferenced crisis information using peer to peer (P2P) mobile technology. Related to MCM are the challenges of data validation, communication security and so on.

Extending MCM

But there’s more. P2P communication is bi-directional, e.g., two-way SMS broadcasting. This means that MCM is also about the ability of the end-user in the field being to query a crisis map using an SMS and/or voice-based interface. Therein lies the combined value of MCM: collection and query.

The Folksomaps case study comes closest to what I have in mind. The project uses binary operators to categorize relationships between objects mapped to render queries possible. For instance, ‘is towards left of’ could be characterized as <Libya, Egypt>.

The methodology draws on the Web Ontology Language (OWL) to model the categorical characteristics of an object (e.g., direction, proximity, etc), and thence infer new relationships not explicitly specified by users of the system. In other words, Folksomaps provides an ontology of locations.

Once this ontology is created, the map can actually be queried at a distance. That’s what I consider to be the truly innovative and unique aspect of MCM. The potential added value is huge, and James BonTempo describes exactly how huge MCM could be in his superb presentation on extending FrontlineSMS.

An initiative related to Folksomaps and very much in line with my thinking about MCM is Cartagen. This project uses string-based geocoding (e.g. “map Bhagalpur, India”) to allow users in the field to produce and search their own maps by using the most basic of mobile phones. “This widens participation to 4 billion cell phone users worldwide, as well as to rural regions outside the reach of the internet. Geographic mapping with text messages has applications in disaster response and health care.”

MCM Scenario

The query functionality is thus key to Mobile Crisis Mapping. One should be able to “mobile-query” a crisis map by SMS or voice.

If I’m interfacing with an Ushahidi deployment in the Sudan, I should be able to send an SMS to find out where, relative to my location, an IDP camp is located; or where the closest airfield is, etc. Query results can be texted back to the mobile phone and the user can forward that result to others. I should also be able to call up a designated number and walk through a simple Interactive Voice Response (IVR) interface to get the same answer.

Once these basic search queries are made available, more complex, nested queries can be developed—again, see James BonTempo’s presentation to get a sense of the tremendous potential of MCM.

The reason I see MCM as the next logical step in the field of crisis mapping is because more individuals have access to mobile phones in humanitarian crises than a computer connected to the Web. In short, the point of Mobile Crisis Mapping is to bring Crisis Mapping Analytics (CMA) to the mobile phone.

Patrick Philippe Meier

JRC: Geo-Spatial Analysis for Global Security

The European Commission’s Joint Research Center (JRC) is doing some phenomenal work on Geo-Spatial Information Analysis for Global Security and Stability. I’ve had several meetings with JRC colleagues over the years and have always been very impressed with their projects.

The group is not very well known outside Europe so the purpose of this blog post is to highlight some of the Center’s projects.

  • Enumeration of Refugee Camps: The project developed an operational methodology to estimate refugee populations using very high resolution (VHR) satellite imagery. “The methodology relies on a combination of machine-assisted procedures, photo-interpretation and statistical sampling.”

jrc1

  • Benchmarking Hand Held Equipment for Field Data Collection: This project tested new devices for the collection for geo-referenced information. “The assessment of the instruments considered their technical characteristics, like the availability of necessary instruments or functionalities, technical features, hardware specifics, software compatibility and interfaces.”

jrc3

  • GEOCREW – Study on Geodata and Crisis Early Warning: This project analyzed the use of geo-spatial technology in the decision-making process of institutions dealing with international crises. The project also aimed to show best practice in the use of geo-spatial technologies in the decision-making process.
  • Support to Peacekeeping Operations in the Sudan: Maps are generally not available or often are out of date for most of the conflict areas in which peacekeping personnel is deployed,  This UNDPKO Darfur mapping initiative aimed to create an alliance of partners that addressed this gap and shared the results.

jrc4

  • Temporary Settlement Analysis by Remote Sensing: The project analyzes different types of refugee and IDP settlements to identify single structures inside refugee settlements. “The objective of the project is to establish the first comprehensive catalog of image interpretation keys, based on last-generation satellite data and related to the analysis of transitional settlements.”

JRC colleagues often publish papers on their work and I highly recommend having a look at this book when it comes out in June 2009:

jrc5

Patrick Philippe Meier

Video Introduction to Crisis Mapping

I’ve given many presentations on crisis mapping over the past two years but these were never filmed. So I decided to create this video presentation with narration in order to share my findings more widely and hopefully get a lot of feedback in the process. The presentation is not meant to be exhaustive although the video does run to about 30 minutes.

The topics covered in this presentation include:

  • Crisis Map Sourcing – information collection;
  • Mobile Crisis Mapping – mobile technology;
  • Crisis Mapping Visualization – data visualization;
  • Crisis Mapping Analysis – spatial analysis.

The presentation references several blog posts of mine in addition to several operational projects to illustrate the main concepts behind crisis mapping. The individual blog posts featured in the presentation are listed below:

This research is the product of a 2-year grant provided by Humanity United  (HU) to the Harvard Humanitarian Initiative’s (HHI) Program on Crisis Mapping and Early Warning, where I am a doctoral fellow.

I look forward to any questions/suggestions you may have on the video primer!

Patrick Philippe Meier

Folksomaps: Gold Standard for Community Mapping

There were a number of mapping-related papers, posters and demo’s at ICTD2009. One paper in particular caught my intention given the topic’s direct relevance to my ongoing consulting work with the UN’s Threat and Risk Mapping Analysis (TRMA) project in the Sudan and the upcoming ecosystem project in Liberia with Ushahidi and Humanity United.

Introduction

Entitled “Folksomaps – Towards Community Intelligent Maps for Developing Regions,” the paper outlines a community-driven approach for creating maps by drawing on “Web 2.0 principles” and “Semantic Web technologies” but without having to rely entirely on a web-based interface. Indeed, Folksomaps “makes use of web and voice applications to provide access to its services.”

I particularly value the authors’ aim to “provide map-based services that represent user’s intuitive way of finding locations and directions in developing regions.” This is an approach that definitely resonates with me. Indeed, it is our responsibility to adapt and customize our community-based mapping tools to meet the needs, habits and symbology of the end user; not the other way around.

I highly recommend this paper (or summary below) to anyone doing work in the crisis mapping field. In fact, I consider it required reading. The paper is co-authored by Arun Kumar, Dipanjan Chakraborty, Himanshu Chauhan, Sheetal Agarwal and Nitendra Rajput of IBM India Research Lab in New Delhi.

Background

Vast rural areas of developing countries do not have detailed maps or mapping tools. Rural populations are generally semi-literate, low-income and non-tech savvy. They are hardly like to have access to neogeography platforms like Google Earth. Moreover, the lack of electricity access and Internet connection also complicates the situation.

We also know that cities, towns and villages in developing countries “typically do not have well structured naming of streets, roads and houses,” which means “key landmarks become very important in specifying locations and directions.”

Drawing on these insights, the authors seek to tap the collective efforts of local communities to populate, maintain and access content for their own benefit—an approach I have described as crowdfeeding.

Surveys of Tech and Non-Tech Users

The study is centered on end-user needs, which is rather refreshing. The authors carried out a series of surveys to be better understand the profiles of end-users, e.g., tech and non-tech users.

The first survey sought to identify answers to the following questions:

  • How do people find out points of interest?
  • How do much people rely on maps versus people on the streets?
  • How do people provide local information to other people?
  • Whether people are interested in consuming and feeding information for a community-driven map system?

The results are listed in the table below:

folksotb1

Non-tech savvy users did not use maps to find information about locations and only 36% of these users required precise information. In addition, 75% of non-tech respondents preferred the choice of a phone-based interface, which really drives home the need for what I have coined “Mobile Crisis Mapping” or MCM.

Tech-users also rely primarily on others (as opposed to maps) for location related information. The authors associate this result with the lack of signboards in countries like India. “Many a times, the maps do not contain fine-grained information in the first place.”

Most tech-users responded that a phone-based location and direction finding system in addition to a web-based interface. Almost 80% expressed interest in “contributing to the service by uploading content either over the phone or though a web-based portal.”

The second survey sought to identify how tech and non-tech users express directions and local information. For example:

  • How do you give directions to people on the road or to friends?
  • How do you describe proximity of a landmark to another one?
  • How do you describe distance? Kilometers or using time-to-travel?

The results are listed in the table below:

folksotb2

The majority of non-tech savvy participants said they make use of landmarks when giving directions. “They use names of big roads […] and use ‘near to’, ‘adjacent to’, ‘opposite to’ relations with respect to visible and popular landmarks […].” Almost 40% of responders said they use time only to describe the distance between any two locations.

Tech-savvy participants almost always use both time and kilometers as a measure to represent distance. Only 10% or so of participants used kilometers only to represent distance.

The Technology

The following characteristics highlight the design choices that differentiate Folksomaps from established notions of map systems:

  • Relies on user generated content rather than data populated by professionals;
  • Strives for spatial integrity in the logical sense and does not consider spatial integrity in the physical sense as essential (which is a defining feature of social maps);
  • Does not consider visual representation as essential, which is important considering the fact that a large segment of users in developing countries do not have access to Internet (hence my own emphasis on mobile crisis mapping);
  • Is non-static and intelligent in the sense that it infers new information from what is entered by the users.
  • User input is not verified by the system and it is possible that pieces of incorrect information in the knowledgebase may be present at different points of time. Folksomaps adopts the Wiki model and allows all users to add, edit and remove content freely while keeping maps up-to-date.

Conceptual Design

Folksomaps uses “landmark” as the basic unit in the mapping knowledgebase model while “location” represents more coarse-grained geographical areas such as a village, city or country. The model then seeks to capture a few key logical characteristics of locations such as direction, distance, proximity and reachability and layer.

The latter constitutes the granularity of the geographic area that a location represents. “The notion of direction and distance from a location is interpreted with respect to the layer that the location represents. In other words, direction and distance could be viewed as binary operator over locations of the same level. For instance, ‘is towards left of ’ would be appropriate if the location pair being considered is <Libya, Egypt>,” but not if the pair is <Nairobi, India>.

The knowledgebase makes use of two modules, the Web Ontology Language (OWL) and a graph database, to represent and store the above concepts. The Semantic Web language OWL is used to model the categorical characteristics of a landmark (e.g., direction, proximity, etc), and thence infer new relationships not explicitly specified by users of the system. In other words, OWL provides an ontology of locations.

The graph database is used represent distance (numerical relationships) between landmarks. “The locations are represented by nodes and the edges between two nodes of the graph are labeled with the distance between the corresponding locations.” Given the insights gained from user surveys, precise distances and directions are not integral components of community-based maps.

The two modules are used to generate answers to queries submitted by users.

User Interaction

The authors rightly recognize that the user interface design is critical to the success of community-based mapping projects. To be sure, users of may be illiterate, or semi-illiterate and not very tech-savvy. Furthermore, users will tend to query the map system when they need it most, e.g., “when they are stuck on the road looking for directions […] and would be pressed for time.” This very much holds true for crisis mapping as well.

Users can perform three main tasks with the system: “find place”, “trace path” and “add info.” In addition, some or all users may be granted the right to edit or remove entries from the knowledgebase. The Folksomaps system can also be bootstrapped from existing databases to populate instances of location types. “Two such sources of data in the absence of a full-fledged Geographical Information System (GIS) come from the Telecom Industry and the Postal Department.”

folksofig3

How the users interface with the system to carry out these tasks will depend on how tech-savvy or literate they are and what type of access they have to information and communication technologies.

Folksomaps thus provides three types of interface: web-based, voice-based and SMS-based. Each interface allows the user to query and update the database. The web-based interface was developed using Java Server Pages (JSP) while the voice-based interface uses JSPs and VoiceXML.

folksofig41

I am particularly interested in the voice-based interface. The authors point to previous studies that suggest a voice-based interaction works well with users who are illiterate or semi-illiterate and who cannot afford to have high-end devices but can use ordinary low-end phones.

folksofig1

I will share this with the Ushahidi development team with the hopes that they will consider adding a voice-based interface for the platform later this year. To be sure, could be very interesting to integrate Freedom Fone’s work in this area.

Insights from User Studies

The authors conducted user studies to verify the benefit and acceptability of Folksomaps. Tech-savvy used the web-based interface while non-tech savvy participants used the voice-based interface. The results are shown in the two tables below.

folksotb3

Several important insights surfaced from the results of the user studies. For example, an important insight gained from the non-tech user feedback was “the sense of security that they would get with such a system. […] Even though asking for travel directions from strangers on the street is an option, it exposes the enquirer to criminal elements […].”

Another insight gain was the fact that many non-tech savvy participants were willing to pay for the call even a small premium over normal charges as they saw value to having this information available to them at all times.” That said, the majority of participants “preferred the advertisement model where an advertisement played in the beginning of the call pays for the entire call.”

Interestingly, almost all participants preferred the voice-based interface over SMS even though the former led to a number of speech recognition errors. The reason being that “many people are either not comfortable using SMS or not comfortable using a mobile phone itself.”

There were also interesting insights on the issue of accuracy from the perspective of non-tech savvy participants. Most participants asked for full accuracy and only a handful were tolerant of minor mistakes. “In fact, one of the main reasons for preferring a voice call over asking people for directions was to avoid wrong directions.”

This need for high accuracy is driven by the fact that most people use public transportation, walk or use a bicycle to reach their destination, which means the cost of incorrect information is large compared to someone who owns a car.

This is an important insight since the authors had first assumed that tolerance for incorrect information was higher. They also learned that meta information is as important to non-tech savvy users as the landmarks themselves. For instance, low-income participants were more interested in knowing the modes of available transportation, timetables and bus route numbers than the road route from a source to a destination.

folkstb4

In terms of insights from tech-savvy participants, they did not ask for fine-grained directions all the time. “They were fight with getting high level directions involving major landmarks.” In addition, the need for accuracy was not as strong as for the non-tech savvy respondents and they preferred the content from the queries sent to them via SMS so they could store it for future access, “pointing out that it is easy to forget the directions if you just hear it.”

Some tech-savvy participants also suggested that the directions provided by Folksomaps should “take into consideration the amount of knowledge the subject already has about the area, i.e., it should be personalized based upon user profile. Other participants mentioned that “frequent changes in road plans due to constructions should be captured by such a system—thus making it more usable than just getting directions.”

Conclusion

In sum, the user interface of Folksomaps needs to be “rich and adaptive to the information needs of the user […].” To be sure, given user preference towards “voice-based interface over SMS, designing an efficient user-friendly voice-based user interface […].” In addition, “dynamic and real-time information augmented with traditional services like finding directions and locations would certainly add value to Folksomaps.” Furthermore, the authors recognize that Folksomaps can “certainly benefit from user interface designs,” and “multi-model front ends.”

Finally, the user surveys suggest “the community is very receptive towards the concept of a community-driven map,” so it is important that the TRMA project in the Sudan and the ecosystem Liberia project build on the insights and lessons learned provided in this study.

Patrick Philippe Meier

Crisis Mapping and Agent Based Models

The idea of combining crisis mapping and agent based modeling has been of great interest to me ever since I took my first seminar on complex systems back in 2006. There are few studies out there that ground agent based models (ABM) on conflict dynamics within a real-world geographical space. One of those few, entitled “Global Pattern Formation and Ethnic/Cultural Violence,” appeared in the journal Science in 2007.

Note that I take issue with a number of assumptions that underlie this study as well as the methodology used. That said, the study is a good illustration of how crisis mapping and ABM can be combined.

Introduction

The authors suggest that global patterns of violence arise due to “the structure of boundaries between groups rather than the groups themselves.” In other words, the spatial boundaries between different populations create a propensity for conflict, “so that spatial heterogeneity itself is predictive of local violence.”

The authors argue that this pattern is “consistent with the natural dynamics of “type separation,” a specific pattern formation also observed in physical and chemical phase separation. The unit of analysis in this study’s ABM, however, is the local ethnic “patch size,” which represents the smallest unit of ethnic members that act collectively as one.

The Model

A simple model of type separation assumes that individuals (or ethnic units) prefer to move to areas where more individuals of the same time reside. Playing the ABM yields progressively larger patches or “islands” of each ethnic group over time. The relationship between patch size and time follows a power law distribution, “a universal behavior that does not depend on many of the details of the model […].”

In other words, the model depicts scale invariant behavior, which implies that “a number of individual agents of the model can be aggregated into a single agent if time is rescaled correspondingly without changing the behavior at the larger scales.”

To model violent conflict, the authors assume that both highly mixed regions and well-segregated groups do not engage in violence. The rationale regarding the former being that in highly mixed regions, “groups of the same type are not large enough to develop strong collective identities, or to identify public spaces as associated with one or another group. When groups are much bigger, “they typically form self-sufficient entities that enjoy local sovereignty.”

To this end, the authors argue that partial separation with poorly defined boundaries fosters conflict when groups are of a size that allows them to impose cultural norms on public spaces, “but where there are still intermittent violations of these rules due to the overlap of cultural domains.” In other words, conflict is a function of population distribution and not of the “specific mechanism by which the population achieves this structure, which may include internally or externally directed migrations.”

The model is therefore founded on the principle that the conditions under which violent conflict becomes likely can be determined by census.

The Analysis

The authors used 1991 census data of the former Yugoslavia and the Indian census data from 2001 and converted the data into map form (see figure below), which they used in an ABM simulation. “Mathematically, the expected violence was determined by detecting patches consisting of islands or peninsulas of one type surrounded by populations of other types.”

mexicanhat

A wavelet filter that has a positive center and a negative surround (also called a Mexican hat filter) was used to detect and correlate the islands/peninsulas. scienceabm1

The red overlays depicted in Figure D above represents the maximum correlation over population types. The diameter of the positive region of the wavelet, i.e., “the size of the local population patches that are likely to experience violence,” is the main predictor of the model.

scienceabm2

To test the predictive power of their model, the authors compared the locations of red overlays with actual incidents of violence as reported in books, newspapers and online sources (the yellow dots in the crisis map below).

yugoabm

Their statistical results indicate that the Yugoslavia crisis map model has a correlation of 0.89 with reports. Moreover, “the predicted results are highly robust to parameter variation [patch size], with essentially equivalent agreement obtained for filter diameters ranging from 18 to 60 km […].”

The statistical results for the India crisis map model indicate a correlation of 0.98. The range of the patch size overlapped that of the former Yugoslavia but is shifted to larger values, up to 100km. This suggests that “regions of width less than 10km or greater than 100km may provide sufficient mixing or isolation to reduce the chance of violence.”

Conclusion

While the authors recognize the importance of social and institutional drivers of violence, they argue that, “influencing the spatial structure might address the conditions that promote violence described [in this study].” In sum, they suggest that, “peaceful coexistence need not require complete integration.”

What do you think?

Patrick Philippe Meier

Threat and Risk Mapping Analysis in Sudan

Massively informative.

That’s how I would describe my past 10 days with the UNDP‘s Threat and Risk Mapping Analysis (TRMA) project in the Sudan. The team here is doing some of the most exciting work I’ve seen in the field of crisis mapping. Truly pioneering. I can’t think of  a better project to apply the past two years of work I have done with the Harvard Humanitarian Initiative’s (HHI) Crisis Mapping and Early Warning Program.

TRMA combines all the facets of crisis mapping that I’ve been focusing on since 2007. Namely, crisis map sourcing, (CMS), mobile crisis mapping (MCM), crisis mapping visualization (CMV), crisis mapping analytics (CMA) and crisis mapping platforms (CMP). I’ll be blogging about each of these in more detail later but wanted to provide a sneak previous in the meantime.

Crisis Map Sourcing (CMS)

The team facilitates 2-day focus groups using participatory mapping methods. Participants identify and map the most pressing crisis factors in their immediate vicinity. It’s really quite stunning to see just how much conversation a map can generate. Rich local knowledge.

trma1

What’s more, TRMA conducts these workshops at two levels for each locality (administrative boundaries within a state): the community-level and at the state-level. They can then compare the perceived threats and risks from both points of view. Makes for very interesting comparisons.

trma2

In addition to this consultative approach to crisis map sourcing, TRMA has played a pivotal role in setting up an Information Management Working Group (IMWG) in the Sudan, which includes the UN’s leading field-based agencies.

What is truly extraordinary about this initiative is that each agency has formally signed an information sharing protocol to share their geo-referenced data. TRMA had already been using much of this data but the process until now had always been challenging since it required repeated bilateral efforts. TRMA has also developed a close professional relationship with the Central Bureau of Statistics Office.

Mobile Crisis Mapping (MCM)

The team has just partnered with a multinational communications corporation to introduce the use of mobile phones for information collection. I’ll write more about this in the coming weeks. Needless to say, I’m excited. Hopefully it won’t be too late to bring up FrontlineSMS‘s excellent work in this area, as well as Ushahidi‘s.

Crisis Mapping Visualization (CMV)

The team needs some help in this area, but then again, that’s one of the reasons I’m here. Watching first reactions during focus groups when we show participants the large GIS maps of their state is  really very telling. Lots more to write about on this and lots to contribute to TRMA’s work. I don’t yet know which maps can be made public but I’ll do my utmost best to get permission to post one or two in the coming weeks.

Crisis Mapping Analytics (CMA)

The team has produced a rich number of different layers of data which can be superimposed to identify visual correlations and otherwise hidden patterns. Perhaps one of the most exciting examples is when the team started drawing fault lines on the maps based on the data collected and their own local area expertise. The team subsequently realized that these fault lines could potential serve as “early warning” markers since a number of conflict incidents subsequently took place along those lines. Like the other crisis mapping components described above, there’s much more to write on this!

Crisis Mapping Platforms (CMP)

TRMA’s GIS team has used ArcGIS but this has been challenging given the US embargo on the Sudan. They therefore developed their own in-house mapping platforms using open-source software. These platforms include the “Threat Mapper” for data entry during (or shortly after) the focus groups and “4Ws” which stands for Who, What, Where and When. The latter tool is operational and will soon be fully developed. 4Ws will actually be used by members of the IMWG to share and visualize their data.

In addition, TRMA makes it’s many maps and layers available by distributing a customized DVD with ArcReader (which is free). Lots more on this in the coming weeks and hopefully some screenshots as well.

Closing the Feedback Loop

I’d like to add with one quick thought, which I will also expand on in the next few weeks. I’ve been in Blue Nile State over the past three days, visiting a number of different local ministries and civil society groups, including the Blue Nile’s Nomadic Union. We distributed dozens of poster-size maps and had at times hour long discussions while pouring over these maps. As I hinted above, the data visualization can be improved. But the question I want to pose at the moment is: how can we develop a manual GIS platform?

While the maps we distributed were of huge interest to our local partners, they were static, as hard-copy maps are bound to be. This got me thinking about possibly using transparencies to overlap different data/thematic layers over a general hard-copy map. I know transparencies can be printed on. I’m just not sure what size they come in or just how expensive they are, but they could start simulating the interactive functionality of ArcReader.

transparency

Even if they’re only available in A4 size, we could distribute binders with literally dozens of transparencies each with a printed layer of data. This would allow community groups to actually start doing some analysis themselves and could be far more compelling than just disseminating poster-size static maps, especially in rural areas. Another idea would be to use transparent folders like those below and hand-draw some of the major layers. Alternatively, there might a type of thin plastic sheet available in the Sudan.

I’m thinking of trying to pilot this at some point. Any thoughts?

folders

Patrick Philippe Meier

Ushahidi Comes to India for the Elections (Updated)

I’m very please to announce that the Ushahidi platform has been deployed at VoteReport.in to crowdsource the monitoring of India’s upcoming elections. The roll out followed our preferred model: an amazing group of Indian partners took the initiative to drive the project forward and are doing a superb job. I’m learning a lot from their strategic thinking.

picture-3

We’re also excited about developing Swift River as part of VoteReport India to apply a crowdsourcing approach to filter the incoming information for accuracy. This is of course all experimental and we’ll be learning a lot in the process. For a visual introduction to Swift River, please see Erik Hersman’s recent video documentary on our conversations on Swift River, which we had a few weeks ago in Orlando.

picture-5

As per our latest Ushahidi deployments, VoteReport users can report on the Indian elections by email, SMS, Tweet or by submitting an incident directly online at VoteReport. Users can also subscribe to email alerts—a functionality I’m particularly excited about as this closes the crowdsourcing to crowdfeeding feedback loop; so I’m hoping we can also add SMS alerts, funding permitted. For more on crowdfeeding, please see my previous post on “Ushahidi: From Crowdsourcing to Crowdfeeding.

picture-4

You can read more about the project here and about the core team here. It really is an honor to be a part of this amazing group. We also have an official VoteReport blog here. I also highly recommend reading Gaurav Mishra‘s blog post on VoteReport here and Ushahidi’s here.

Next Steps

  • We’re thinking of using a different color to depict “All Categories” since red has cognitive connotations of violence and we don’t want this to be the first impression given by the map.
  • I’m hoping we can add a “download feature” that will allow users to directly download the VoteReport data as a CSV file and as a KML Google Earth Layer. The latter will allow users to dynamically visualize VoteReports over space and time just like [I did here] with the Ushahidi data during the Kenyan elections.
  • We’re also hoping to add a feature that asks those submitting incidents to check-off that the information they submit is true. The motivation behind this is inspired from recent lessons learned in behavioral economics as explained in my blog post on “Crowdsourcing Honesty.

Patrick Philippe Meier

iRevolution One Year On…

I started iRevolution exactly one year ago and it’s been great fun! I owe the Fletcher A/V Club sincere thanks for encouraging me to blog. Little did I know that blogging was so stimulating or that I’d be blogging from the Sudan.

Here are some stats from iRevolution Year One:

  • Total number of blog posts = 212
  • Total number of comments = 453
  • Busiest day ever = December 15, 2008

And the Top 10 posts:

  1. Crisis Mapping Kenya’s Election Violence
  2. The Past and Future of Crisis Mapping
  3. Mobile Banking for the Bottom Billion
  4. Impact of ICTs on Repressive Regimes
  5. Towards an Emergency News Agency
  6. Intellipedia for Humanitarian Warning/Response
  7. Crisis Mapping Africa’s Cross-border Conflicts
  8. 3D Crisis Mapping for Disaster Simulation
  9. Digital Resistance: Digital Activism and Civil Resistance
  10. Neogeography and Crisis Mapping Analytics

I do have a second blog that focuses specifically on Conflict Early Warning, which I started at the same time. I have authored a total of 48 blog posts.

That makes 260 posts in 12 months. Now I know where all the time went!

The Top 10 posts:

  1. Crimson Hexagon: Early Warning 2.0
  2. CSIS PCR: Review of Early Warning Systems
  3. Conflict Prevention: Theory, Police and Practice
  4. New OECD Report on Early Warning
  5. Crowdsourcing and Data Validation
  6. Sri Lanka: Citizen-based Early Warning/Response
  7. Online Searches as Early Warning Indicators
  8. Conflict Early Warning: Any Successes?
  9. Ushahidi and Conflict Early Response
  10. Detecting Rumors with Web-based Text Mining System

I look forward to a second year of blogging! Thanks to everyone for reading and commenting, I really appreciate it!

Patrick Philippe Meier