Tag Archives: marine

Meet the Youngest Drone Pilots in Fiji

In 2017, WeRobotics was one of more than 500 teams to compete in the MIT Solve Challenge on Youth, Skills and Workforce of the Future. Only 2% were selected as winners, and only 1% of all the applicants received dedicated funding from the Australian Department of Foreign Affairs and Trade (DFAT) and the Atlassian Foundation. Our pitch focused on building the foundations of South Pacific Flying Labs. By winning the MIT Solve Award and securing funding from DFAT, Atlassian and the University of the South Pacific (USP), Pacific Flying Labs has been able to join our global and growing network of Flying Labs; including labs in Nepal, Tanzania, Uganda, Peru, Dominican Republic and soon Brazil, Panama, Senegal and Philippines. Pacific Flying Labs is the first of our labs to have a strong focus on preparing youths for the workforce of the future.

Pacific Labs is a joint collaboration with USP and the university’s Geospatial Sciences Program, which is where the lab is based. Amrita Lal, an alum of USP’s program, leads the work of Pacific Flying Labs from Fiji. In the weeks and months following our successful pitch to the MIT Solve Challenge, Amrita along with WeRobotics, USP faculty and volunteers organized two dedicated trainings and projects with youths from Fiji. Amrita and team also organized and ran the first ever drones for good conference in the South Pacific, bringing together key stakeholders from Fiji and the region to catalyze new partnerships for future projects. The youths who participated in the trainings and projects included young women and men from local schools and local orphanages. In addition, undergraduate students from USP also participated in trainings on campus. As part of this initiative, WeRobotics transferred 2 underwater drones and 2 aerial drones to South Pacific Flying Labs along with tablets and relevant software.

The first training and project focused on the use of marine robotics to study the health of coral reefs. Participants learned how to use underwater drones safely and effectively. They captured over an hour of underwater footage from a pier off Maui Bay. The following day, at the USP GIS Lab, they teamed up into groups and analyzed the footage. The groups learned to identify the different species of fish (particularly butterfly fish) and corals visible in the footage in order to assess the health of the corals. They also learned about how marine life is impacted by human activity including climate change. They subsequently created powerpoint slides and presented their findings and recommendations to each other. After their presentations, participants were trained on how to use aerial drones safely and effectively. This training was carried out at an approved field on USP campus. The women who participated in these trainings and projects ranged from 12 to 18 years in age and all but one were from a local orphanage.

The second training and project focused on the use of aerial drones for a disaster risk reduction at an informal settlement near USP campus. The training began with a lecture on the use of drones in disaster response. This training comprised both manual flights and automated flights. The latter taught participants how to program and supervise flight plans. Following this training, the youths worked with Pacific Flying Labs to map an informal settlement. Once the imagery was collected, participants returned to the lab to process and analyze the imagery. More specifically, they teamed up into groups to identify health risks, safety concerns and vulnerabilities to natural hazards. They subsequently created powerpoint slides and presented their findings and recommendations to each other. Their findings were subsequently shard with the Red Cross. Young men (aged 17-18) and one young woman (aged 17) participated in this second training and project. Some of the youths who participated in the marine training & project also joined the aerial robotics training & project.

Once the trainings and projects were completed, Pacific Flying Labs and WeRobotics met with key stakeholders and prospective partners to explore collaboration opportunities. This included meetings with the Australian Red Cross (pictured below), Fiji Red Cross, Secretariat of Pacific Communities (SPC), World Mosquito Program (WMP) and Suva Fire Service, for example.

In addition, live demos of cargo flights were given to both to the Civil Aviation Authority and to USP students and faculty (video below). Also, initial training on marine drones was provided to USP students at the swimming pool on campus. In total, 21 USP students joined our aerial and marine drone demos and lectures.

The first phase of our work with Pacific Flying Labs culminated with a full day workshop on the use of drones for social good in the South Pacific. This was the first convening of it’s kind in the region, and brought together key stakeholders to address common challenges, identify opportunities and to create new strategic partnerships. These stakeholders included the Fiji Red Cross, Australian Red Cross, Australian Center for Field Robotics, Secretariat of the Pacific Community (SPC) and several other groups. Two youths who participated in both sets of trainings/projects opened the workshop by presenting their findings (photo below; the young woman in this photo is not one of the vulnerable youths who participated in the trainings/projects). This opening session was followed by a series of talks from local and international participants working on drones projects in the region.

During the afternoon sessions, participants discussed common challenges and new partnership opportunities. Over 30 participants from 8 different organizations participated in the workshop. Four new strategic partnership opportunities were identified  between Pacific Labs and the following organizations as a result: Red Cross, SPC, World Mosquito Program and Australian Center for Field Robotics.

Today, Fiji is being hit by a second cyclone in just as many weeks. Amrita and team are already in touch with the Fiji Red Cross and are on standby to support the disaster response and recovery work after Cyclone Keni barrels through. So instead of hiring drone companies from Australia or further afield, organizations like the Red Cross, UN and World Bank can hire young drone pilots from Fiji to support a wide range of humanitarian, development and environmental projects. Local pilots can respond more quickly than foreign pilots; plus they know the country better, speak the local language, understand local traditions and have lower overhead costs. This is just one several ways we plan to prepare youths in the region for the workforce of the future.

Global Thought Leadership in Social Sector Robotics

Cross-posted from WeRobotics

“I’ve been to countless remote sensing conferences over the past 30 years but WeRobotics Global absolutely ranks as the best event I’ve been to.” – Remote Sensing Expert

“The event was really mind-blowing. I’ve participated in many workshops over the past 20 years. WeR Global was by far the most insightful and practical. It is also amazing how closely together everyone is working — irrespective of who is working where (NGO, UN, private sector, donor). I’ve never seen such a group of people come together this away.” – Humanitarian Professional

“WeRobotics Global is completely different to any development meeting or workshop I’ve been to in recent years. The discussions flowed seamlessly between real world challenges, genuine bottom-up approaches and appropriate technology solutions. Conversations were always practical and strikingly transparent. This was a highly unusual event.” – International Donor

WeRobotics Global has become a premier forum for social good robotics. The feedback featured above was unsolicited. On June 1, 2017, we convened our first, annual global event, bringing together 34 organizations to New York City (full list below) to shape the global agenda and future use of robotics in the social good sector. WeRobotics Global was kindly hosted by Rockefeller, the first donor to support our efforts. They opened the event with welcome remarks and turned it over to Patrick Meier from WeRobotics who provided an overview of WeRobotics and set the big picture context for social robotics.

The first panel featured our Flying Labs Coordinators from Tanzania (Yussuf), Peru (Juan) and Nepal (Uttam). Each shared the hard work they’ve been doing over the past 6-10 months on localizing and applying robotics solutions. Yussuf spoke about the lab’s use of aerial robotics for disaster damage assessment following the earthquake in Bukoba and for coastal monitoring, environmental monitoring and forestry management. He emphasized the importance of community engagement and closed with new projects that Tanzania Flying Labs is working on such as mangrove monitoring for the Department of Forestry. Juan presented the work of the labs in the Amazon Rainforest, which is a joint effort with the Peruvian Ministry of Health. Together, they are field-testing the use of affordable and locally repairable flying robots for the delivery of antivenom and other medical payload between local clinics and remote villages. Juan noted that Peru Flying Labs is gearing up to carry out a record number of flight tests this summer using a larger and more diverse fleet of flying robots. Last but not least, Uttam showed how Nepal Flying Labs has been using flying robots for agriculture monitoring, damage assessment and mapping of property rights. He also gave an overview of the social entrepreneurship training and business plan competition recently organized by Nepal Flying Labs. This business incubation training has resulted in the launch of 4 new Nepali start-up companies focused on Robotics-as-a-Service. 

The following videos provide highlights from each of our Flying Labs: Tanzania, Peru and Nepal.

The second panel featured talks on sector based solutions starting with the International Federation of the Red Cross (IFRC). The Federation (Aarathi) spoke about their joint project with WeRobotics; looking at cross-sectoral needs for various robotics solutions in the South Pacific. IFRC is exploring at the possibility of launching a South Pacific Flying Labs with a strong focus on women and girls. Pix4D (Lorenzo) addressed the role of aerial robotics in agriculture, giving concrete examples of successful applications while providing guidance to our Flying Labs Coordinators. The Wall Street Journal (Sally) spoke about the use of aerial robotics in news gathering and investigative journalism. She specifically emphasized the importance of using flying robots for storytelling. Duke Marine Labs (David) closed the panel with an overview of their projects in nature conservation and marine life protection, highlighting their use of machine learning for automated feature detection for real-time analysis.

DML

Panel number three addressed the transformation of transportation. UNICEF (Judith) highlighted the field tests they have been carrying out in Malawi; using cargo robotics to transport HIV samples in order to accelerate HIV testing and thus treatment. UNICEF has also launched an air corridor in Malawi to enable further field-testing of flying robots. MSF (Oriol) shared their approach to cargo delivery using aerial robotics. They shared examples from Papua New Guinea (PNG) and emphasized the importance of localizing appropriate robotics solutions that can be maintained locally. MSF also called for the launch of PNG Flying Labs. IAEA was unable to attend WeR Global, so Patrick and Adam from WeRobotics gave the talk instead. WeRobotics is teaming up with IAEA to design and test a release mechanism for sterilized mosquitos in order to reduce the incidence of Zika and other mosquito-borne illnesses. More here. Finally, Llamasoft (Sid) closed the panel with a strong emphasis on the need to collect and share structured data to accurately carry out comparative cost-benefit-analyses of cargo delivery via flying robots versus conventional means. Sid used the analogy of self-driving cars to highlight how problematic the current lack of data vis-a-vis reliably evaluating the impact of cargo robotics.

UM

The fourth and final panel went beyond aerial robotics. Digger (Thomas) showed how they convert heavy construction vehicles into semi-autonomous platforms to clear landmines and debris in conflict zones like Iraq and Syria. Science in the Wild (Ulyana) was alas unable to attend the event, so Patrick from WeRobotics gave the talk instead. This focused on the use of swimming robots to monitor glacial lakes in the Himalaya. The purpose of the effort is to identify cracks in the lake floors before they trigger what local villagers call the tsunamis of the Himalaya. OpenROV (David) gave a talk on the use of diving robots, sharing real-world examples and providing exciting updates on the new Trident diving robot. Planet Labs (Andrew) gave the closing talk, highlighting how space robotics (satellites) are being used across a wide range of social good projects. He emphasized the importance of integrating both aerial and satellite imagery to support social good projects.

Screenshot 2017-06-05 12.36.33

The final session at WeR Global comprised breakout groups to identify next steps for WeRobotics and the social good sector more broadly. Many quality insights and recommendations were shared during the report back. One such recommendation was to hold WeR Global again, and sooner rather than later. So we look forward to organizing WeRobotics Global 2018. We will be providing updates via our blog and email list. We will also use our blog and email list to share select videos of the individual talks from Global 2017 along with their respective slide decks.

In the meantime, a big thanks to all participants and speakers for making Global 2017 such an unforgettable event. And sincerest thanks to the Rockefeller Foundation for hosting us at their headquarters in New York City.


Organizations that participated in WeRobotics Global 2017

UN Office for the Coordination of Humanitarian Affairs (OCHA), International Federation of the Red Cross (IFRC), World Food Program (WFP), UN Development Program (UNDP),Médecins Sans Frontières (MSF), UNICEF, World Bank, World Economic Forum (WEF), Cadasta, Scripps Institute of Oceanography, Duke Marine Labs, Fauna and Flora International, Science in the Wild, Drone Journalism Lab, Wall Street Journal, ESRI, Pix4D, Radiant, OpenAerialMap, Planet Labs, Llamasoft, Amazon Prime Air, senseFly, OpenROV, Digger, UPenn Robotics, Institute of Electrical and Electronics Engineers (IEEE), Rockefeller Foundation, Gates Foundation, Omidyar Network, Hewlett Foundation, USAID and Inter-American Development Bank (IADB).

Crowdsourcing Solutions and Crisis Information during the Renaissance

The Bristol Channel Floods of January 30, 1607 reportedly caused the largest loss of life from any sudden onset natural disaster in the UK in the past 500 years. “As there were no newspapers at the time, principal accounts reporting the impact of the flood survive in a small number of pamphlets privately printed in London. These original pamphlets […] with titles like Lamentable Newes out of Monmouthshire and Newes of out Summerset-shire, were sold by printers who also published Shakespeare” (RMS 2007).

Clearly, crowdsourcing is not new, only the word is. After all, crowdsourcing is a methodology, not a technology nor an industry. Perhaps one of my favorite examples of crowdsourcing during the Renaissance surrounds the invention of the marine chronometer, which completely revolutionized long distance sea travel. Thousands of lives were being lost in shipwrecks because longitude coordinates were virtually impossible to determine in the open seas. Finding a solution this problem became critical as the Age of Sail dawned on many European empires. 

So the Spanish King, Dutch Merchants and others turned to crowdsourcing by offering major prize money for a solution. The British government even launched the “Longitude Prize” which was established through an Act of Parliament in 1714 and administered by the “Board of Longitude.” This board brought together the greatest scientific minds of the time to work on the problem, including Sir Isaac Newton. Galileo was also said to have taken up the challenge. 

The main prizes included: “£10,000 for a method that could determine longitude within 60 nautical miles (111 km); £15,000 for a method that could determine longitude within 40 nautical miles (74 km); and £20,000 for a method that could determine longitude within 30 nautical miles (56 km).” Note that £20,000 in 1714 is around $4.7 million dollars today. The $1 million Netflix Prize launched 400 years later pales in comparison.” In addition, the Board had the discretion to make awards to persons who were making significant contributions to the effort or to provide financial support to those who were working towards a solution. The Board could also make advances of up to £2,000 for experimental work deemed promising.” 

Interestingly, the person who provided the most breakthroughs—and thus received the most prize money—was the son of a carpenter, the self-educated British clockmaker John Harrison.  And so, as noted by Peter LaMotte, “by allowing anyone to participate in solving the problem, a solution was found for a puzzle that had baffled some of the brightest minds in history (even Galileo!). In the end, it was found by someone who would never have been tapped to solve it to begin with.”

I’d love to see a “Manual GPS Prize” to find very simple, virtually free and highly scalable solutions for accurate geo-location. This means no GPS units and no smart phones—preferably no cell phones at all actually. Something along the lines of WalkingPapers but without the need to print out satellite imagery and scan anything. Impossible? What if the prize for a solution were $4.7 million?

Interested in more examples of crowdsourcing from way back when? Then check-out Peter’s recent blog post and my earlier post entitled “Calling 911: What Humanitarians Can Learn from 50 Years of Crowdsourcing.” Have other examples to share? Please add them to the comments section, thanks!