Tag Archives: WeRobotics

Global Thought Leadership in Social Sector Robotics

Cross-posted from WeRobotics

“I’ve been to countless remote sensing conferences over the past 30 years but WeRobotics Global absolutely ranks as the best event I’ve been to.” – Remote Sensing Expert

“The event was really mind-blowing. I’ve participated in many workshops over the past 20 years. WeR Global was by far the most insightful and practical. It is also amazing how closely together everyone is working — irrespective of who is working where (NGO, UN, private sector, donor). I’ve never seen such a group of people come together this away.” – Humanitarian Professional

“WeRobotics Global is completely different to any development meeting or workshop I’ve been to in recent years. The discussions flowed seamlessly between real world challenges, genuine bottom-up approaches and appropriate technology solutions. Conversations were always practical and strikingly transparent. This was a highly unusual event.” – International Donor

WeRobotics Global has become a premier forum for social good robotics. The feedback featured above was unsolicited. On June 1, 2017, we convened our first, annual global event, bringing together 34 organizations to New York City (full list below) to shape the global agenda and future use of robotics in the social good sector. WeRobotics Global was kindly hosted by Rockefeller, the first donor to support our efforts. They opened the event with welcome remarks and turned it over to Patrick Meier from WeRobotics who provided an overview of WeRobotics and set the big picture context for social robotics.

The first panel featured our Flying Labs Coordinators from Tanzania (Yussuf), Peru (Juan) and Nepal (Uttam). Each shared the hard work they’ve been doing over the past 6-10 months on localizing and applying robotics solutions. Yussuf spoke about the lab’s use of aerial robotics for disaster damage assessment following the earthquake in Bukoba and for coastal monitoring, environmental monitoring and forestry management. He emphasized the importance of community engagement and closed with new projects that Tanzania Flying Labs is working on such as mangrove monitoring for the Department of Forestry. Juan presented the work of the labs in the Amazon Rainforest, which is a joint effort with the Peruvian Ministry of Health. Together, they are field-testing the use of affordable and locally repairable flying robots for the delivery of antivenom and other medical payload between local clinics and remote villages. Juan noted that Peru Flying Labs is gearing up to carry out a record number of flight tests this summer using a larger and more diverse fleet of flying robots. Last but not least, Uttam showed how Nepal Flying Labs has been using flying robots for agriculture monitoring, damage assessment and mapping of property rights. He also gave an overview of the social entrepreneurship training and business plan competition recently organized by Nepal Flying Labs. This business incubation training has resulted in the launch of 4 new Nepali start-up companies focused on Robotics-as-a-Service. 

The following videos provide highlights from each of our Flying Labs: Tanzania, Peru and Nepal.

The second panel featured talks on sector based solutions starting with the International Federation of the Red Cross (IFRC). The Federation (Aarathi) spoke about their joint project with WeRobotics; looking at cross-sectoral needs for various robotics solutions in the South Pacific. IFRC is exploring at the possibility of launching a South Pacific Flying Labs with a strong focus on women and girls. Pix4D (Lorenzo) addressed the role of aerial robotics in agriculture, giving concrete examples of successful applications while providing guidance to our Flying Labs Coordinators. The Wall Street Journal (Sally) spoke about the use of aerial robotics in news gathering and investigative journalism. She specifically emphasized the importance of using flying robots for storytelling. Duke Marine Labs (David) closed the panel with an overview of their projects in nature conservation and marine life protection, highlighting their use of machine learning for automated feature detection for real-time analysis.

DML

Panel number three addressed the transformation of transportation. UNICEF (Judith) highlighted the field tests they have been carrying out in Malawi; using cargo robotics to transport HIV samples in order to accelerate HIV testing and thus treatment. UNICEF has also launched an air corridor in Malawi to enable further field-testing of flying robots. MSF (Oriol) shared their approach to cargo delivery using aerial robotics. They shared examples from Papua New Guinea (PNG) and emphasized the importance of localizing appropriate robotics solutions that can be maintained locally. MSF also called for the launch of PNG Flying Labs. IAEA was unable to attend WeR Global, so Patrick and Adam from WeRobotics gave the talk instead. WeRobotics is teaming up with IAEA to design and test a release mechanism for sterilized mosquitos in order to reduce the incidence of Zika and other mosquito-borne illnesses. More here. Finally, Llamasoft (Sid) closed the panel with a strong emphasis on the need to collect and share structured data to accurately carry out comparative cost-benefit-analyses of cargo delivery via flying robots versus conventional means. Sid used the analogy of self-driving cars to highlight how problematic the current lack of data vis-a-vis reliably evaluating the impact of cargo robotics.

UM

The fourth and final panel went beyond aerial robotics. Digger (Thomas) showed how they convert heavy construction vehicles into semi-autonomous platforms to clear landmines and debris in conflict zones like Iraq and Syria. Science in the Wild (Ulyana) was alas unable to attend the event, so Patrick from WeRobotics gave the talk instead. This focused on the use of swimming robots to monitor glacial lakes in the Himalaya. The purpose of the effort is to identify cracks in the lake floors before they trigger what local villagers call the tsunamis of the Himalaya. OpenROV (David) gave a talk on the use of diving robots, sharing real-world examples and providing exciting updates on the new Trident diving robot. Planet Labs (Andrew) gave the closing talk, highlighting how space robotics (satellites) are being used across a wide range of social good projects. He emphasized the importance of integrating both aerial and satellite imagery to support social good projects.

Screenshot 2017-06-05 12.36.33

The final session at WeR Global comprised breakout groups to identify next steps for WeRobotics and the social good sector more broadly. Many quality insights and recommendations were shared during the report back. One such recommendation was to hold WeR Global again, and sooner rather than later. So we look forward to organizing WeRobotics Global 2018. We will be providing updates via our blog and email list. We will also use our blog and email list to share select videos of the individual talks from Global 2017 along with their respective slide decks.

In the meantime, a big thanks to all participants and speakers for making Global 2017 such an unforgettable event. And sincerest thanks to the Rockefeller Foundation for hosting us at their headquarters in New York City.


Organizations that participated in WeRobotics Global 2017

UN Office for the Coordination of Humanitarian Affairs (OCHA), International Federation of the Red Cross (IFRC), World Food Program (WFP), UN Development Program (UNDP),Médecins Sans Frontières (MSF), UNICEF, World Bank, World Economic Forum (WEF), Cadasta, Scripps Institute of Oceanography, Duke Marine Labs, Fauna and Flora International, Science in the Wild, Drone Journalism Lab, Wall Street Journal, ESRI, Pix4D, Radiant, OpenAerialMap, Planet Labs, Llamasoft, Amazon Prime Air, senseFly, OpenROV, Digger, UPenn Robotics, Institute of Electrical and Electronics Engineers (IEEE), Rockefeller Foundation, Gates Foundation, Omidyar Network, Hewlett Foundation, USAID and Inter-American Development Bank (IADB).

How To Coordinate UAV Deployments During Disasters

My team and I at WeRobotics are partnering with the World Food Program (WFP) to develop practical coordination mechanisms for UAV deployments in collaboration. These will be developed with a range of national & local partners. In this post I want to share the basic coordination protocols we used in the aftermath of Cyclone Pam, a category 5 cyclone that devastated the islands of Vanuatu in 2015. By “we” I mean myself, the World Bank and two UAV companies from Australia (Heliwest) and New Zealand (X-Craft).

The World Bank tasked me with spearheading the UAV response to Cyclone Pam so I recruited the two companies to carry out the aerial surveys. I selected them from a dozen groups that had registered with the Humanitarian UAV Network (UAViators) Global Pilot Roster. When we landed at the international airport in Port Vila, we saw a very common scene. Military cargo aircraft filled with food, water and other relief items. Helicopters were also being chartered to support the relief efforts. And commercial aircrafts like the one that had taken us to Vanuatu were also flying in and out on a daily basis.

We clearly needed to develop coordination mechanisms that would allow us to fly our UAVs in this relatively complex airspace. So within an hour of landing in Port Vila, I organized a joint meeting with the Government of Vanuatu, Air Traffic Control (ATC), World Bank, Australian Defense Force, New Zealand Defense Force and the two UAV companies. By the end of the 1-hour meeting we had agreed on a clear set of coordination protocols that would enable us to fly our UAVs safely in non-segregated airspace. And it wasn’t rocket science.

At 22:00 every night, we would email the Australian Defense Force (ADF) our flight plans for the following day. An example of such a plan is pictured above. By 23:00, the ADF would respond with a yes/no. (They said yes to all our plans). At 23:00, we would email our approved flight plans to controllers at ATC and start programming the UAV flights. We’d get a few hours of sleep and head back when it was still dark to reach the survey sites as early as possible. This was also true for areas near the airport since we could only fly our UAVs between 6am-8am based on the agreed protocols.

Once on site, we’d set up the UAVs and go through our regular check-lists to ensure they were calibrated, tested and ready to fly. Before take off, we would call ATC (we had the mobile phone numbers of 2 ATC operators) and proceed as follows:

“Hello ATC, this is the World Bank UAV Team. We are on site in [name of location] for flight number [x] and ready for takeoff. Do we have your permission?” 

After verbal confirmation, we would launch our UAVs and carry out the aerial survey. We flew below 400 feet (per UAV regulations) and never, ever strayed from our approved flight plan. The Civil Aviation Authority of Vanuatu had given us permission to fly Extended Line of Site, which meant we could fly beyond visual line of site as long as we could keep an eye on general airspace where our UAV was operating. After landing the UAV, we would call ATC back:

“Hello ATC, this is the World Bank UAV Team. We have just landed the UAV in [name of location] and have completed flight number [x]. Thanks.” 

Simple and yet highly effective for the context at hand. We had the mandate, all the right contacts and we everyone followed the coordination protocols. But this is just a subset of protocols required for coordinating UAV flights. There are other components such as data-sharing workflows that need to be in place well before a disaster. What’s more, in the case of Cyclone Pam, we were working with only two professional UAV teams in a Small Island State. Just weeks after Cyclone Pam, a devastating 8.0 magnitude earthquake struck Nepal. The situation there was a lot more complex with at least 15 UAV teams self-deploying to the country.

The UN Office for the Coordination of Humanitarian Affairs (OCHA) in Nepal formally asked me to coordinate these teams, which turned out to be quite the nightmare. The Civil Aviation Authority of Nepal (CAAN) did not have the capacity or expertise to partner with us in coordinating UAV flights. Nor did UNDAC. Many of the self-deployed UAV teams had never worked in disaster response before let alone in a developing country. So they had no idea how to actually support  or plug into formal relief efforts.

While most of UAV teams blamed connectivity issues (slow and intermittent email/phone access) for being unable to follow our coordination efforts online, several of them had no problem live-tweeting pictures of their UAVs. So I teamed up with LinkedIn For Good to developed a very simple Twitter-based coordination system overnight. UAV teams could now tweet their flight plans which would get automatically added to an online map and database. The UAV teams kept tweeting but not a single one bothered to tweet their plan.

To say this was problematic is an understatement. When organizations like WFP are using manned aircraft and helicopters to deliver urgent relief supplies to affected communities, they and ATC need to know which UAVs are flying where, how high and when. This is also true of Search and Rescue (SaR) teams that often fly their helicopters at low altitudes. In due course, we’ll have transponders to track UAVs in real-time. But safety is not the only consideration here. There is also a question of efficiency. It turns out that several UAV teams in Nepal carried out aerial surveys of the exact same areas, which is hardly optimal.

So I applaud the WFP for their important leadership on this matter and look forward to working with them and in-country stakeholders to develop practical coordination mechanisms. In the meantime, WeRobotics has set up Nepal Flying Labs to build local capacity around the use of UAVs and enable local responders to use UAVs safely, responsibly and effectively. All of our Flying Labs will adopt the resulting coordination mechanisms developed with WFP and stakeholders. 

How Zanzibaris are Hacking Flying Robots

Island life can be rough for flying robots. They have to contend with sandy beaches, sea salt, overbearing heat, humidity, high winds and rapidly changing weather patterns featuring sudden downpours. Birds of prey can also be a major menace for flying robots. While these aren’t exactly the types of problems one typically comes across at humanitarian innovation labs in New York, Geneva or Singapore, they’re part of everyday life for our Tanzania Flying Labs and partners like the State University of Zanzibar (SUZA). When team and I at WeRobotics were in Tanzania last month to continue building the local capacity of our Flying Labs, I had the opportunity to learn first hand from our Tanzanian friends about how they hack robotics solutions to survive island life.

Birds of prey are no joke when their airspace is invaded. I’ve experienced this several times while flying robots (UAVs/drones) over the past four years. The aerial photograph above, for example, was taken about 2 years ago in South Africa. I raced to land my UAV as soon as I spotted the eagle but the bird came in for attack nonetheless. I was seriously worried that the eagle would be injured but luckily it swerved away at the last second.

Turns out birds of prey are a problem for many UAV pilots around the world. According to senseFly, a leading UAV manufacturer, bird strikes against UAVs are “surprisingly common and occur in many parts of the world; not only in Australia but also parts of Africa, select US states, parts of Europe and in Latin America.” Our Tanzanian team and partners face similar challenges when flying in Zanzibar, with some of their UAVs no longer operational after encounters with birds of prey. So they’ve tried a number of different tactics and the one that seems to work the best for now is deceivingly simple.

I found about this while looking over the shoulder of my colleague Khadija as she was prepared a third UAV for flight. I hadn’t seen aluminum foil on a flying robot before and couldn’t figure out what it was for. So I asked Khadija, who explained: “This is to keep the birds away; they don’t like it when we invade their airspace, they were there first, after all. So we simply tape some foil to a wing, which shines and keeps the birds away.” Perhaps the eagles realize that birds aren’t supposed to shine, so they keep their distance. Now, this isn’t exactly a sexy solution by any means, and it barely costs 25 cents, but it works.

Humanitarian technology doesn’t have to be shiny or expensive, it just has to work. Another simple way that our Zanzibari friends are hacking UAV flights to help robots cope with island life has to do with the orange tarp below.

When aerial robots land on sand, the grains can wreck havoc on the motors, cameras and sensors. This is especially true if you’re flying (and landing) several times a day for many weeks on end. It’s also worth noting that non-sandy landing sites can be quite few and far between in some parts of the island. So our local colleagues have been experimenting with fishing nets and most recently tarps in order to catch the robots as they come in for landing. They’re still working on refining this technique as this video shows:

Have you come across other examples of local adaptations of robotics/UAV technology in Africa, Asia or Latin America? If so, I’d really like to hear from you so I can share them with our growing network of Flying Labs. Thank you!

Why Robots Are Flying Over Zanzibar and the Source of the Nile

An expedition in 1858 revealed that Lake Victoria was the source of the Nile. We found ourselves on the shores of Africa’s majestic lake this October, a month after a 5.9 magnitude earthquake struck Tanzania’s Kagera Region. Hundreds were injured and dozens killed. This was the biggest tragedy in decades for the peaceful lakeside town of Bukoba. The Ministry of Home Affairs invited WeRobotics to support the recovery and reconstruction efforts by carrying out aerial surveys of the affected areas. 

2016-10-10-08-14-57-hdr

The mission of WeRobotics is to build local capacity for the safe and effective use of appropriate robotics solutions. We do this by co-creating local robotics labs that we call Flying Labs. We use these Labs to transfer the professional skills and relevant robotics solutions to outstanding local partners. Our explicit focus on capacity building explains why we took the opportunity whilst in Kagera to train two Tanzanian colleagues. Khadija and Yussuf joined us from the State University of Zanzibar (SUZA). They were both wonderful to work with and quick learners too. We look forward to working with them and other partners to co-create our Flying Labs in Tanzania. More on this in a future post.

Aerial Surveys of Kagera Region After The Earthquake

We surveyed multiple areas in the region based on the priorities of our local partners as well as reports provided by local villagers. We used the Cumulus One UAV from our technology partner DanOffice to carry out the flights. The Cumulus has a stated 2.5 hour flight time and 50 kilometer radio range. We’re using software from our partner Pix4D to process the 3,000+ very high resolution images captured during our 2 days around Bukoba.

img_6753

Above, Khadija and Yussuf on the left with a local engineer and a local member of the community on the right, respectfully. The video below shows how the Cumulus takes off and lands. The landing is automatic and simply involves the UAV stalling and gently gliding to the ground. 

We engaged directly with local communities before our flights to explain our project and get their permissions to fly. Learn more about our Code of Conduct.

img_6807

Aerial mapping with fixed-wing UAVs can identify large-scale damage over large areas and serve as a good base map for reconstruction. A lot of the damage, however, can be limited to large cracks in walls, which cannot be seen with nadir (vertical) imagery. We thus flew over some areas using a Parrot Bebop2 to capture oblique imagery and to get closer to the damage. We then took dozens of geo-tagged images from ground-level with our phones in order to ground-truth the aerial imagery.

img_6964

We’re still processing the resulting imagery so the results below are simply the low resolution previews of one (out of three) surveys we carried out.

ortho1_bukoba

Both Khadija and Yussuf were very quick learners and a real delight to work with. Below are more pictures documenting our recent work in Kagera. You can follow all our trainings and projects live via our Twitter feed (@werobotics) and our Facebook page. Sincerest thanks to both Linx Global Intelligence and UR Group for making our work in Kagera possible. Linx provided the introduction to the Ministry of Home Affairs while the UR Group provided invaluable support on the logistics and permissions.

img_6827

Yussuf programming the flight plan of the Cumulus

img_6875

Khadija is setting up the Cumulus for a full day of flying around Bukoba area

img_6756

Khadija wants to use aerial robots to map Zanzibar, which is where she’s from

img_6787

Community engagement is absolutely imperative

img_6791

Local community members inspecting the Parrot’s Bebop2

From the shores of Lake Victoria to the coastlines of Zanzibar

Together with the outstanding drone team from the State University of Zanzibar, we mapped Jozani Forest and part of the island’s eastern coastline. This allowed us to further field-test our long-range platform and to continue our local capacity building efforts following our surveys near the Ugandan border. Here’s a picture-based summary of our joint efforts.

2016-10-14-09-09-48

Flying Labs Coordinator Yussuf sets up the Cumulus UAV for flight

2016-10-13-14-44-27-hdr

Turns out selfie sticks are popular in Zanzibar and kids love robots.

2016-10-14-10-01-25

Khairat from Team SUZA is operating the mobile air traffic control tower. Team SUZA uses senseFly eBees for other projects on the island.

2016-10-15-09-03-10

Another successful takeoff, courtesy of Flying Labs Coordinator Yussuf.

2016-10-15-11-11-20

We flew the Cumulus at a speed of 65km/h and at an altitude of 265m.

2016-10-15-13-11-13

The Cumulus flew for 2 hours, making this our longest UAV flight in Zanzibar so far.

2016-10-15-10-38-51-hdr

Khadija from Team SUZA explains to local villagers how and why she maps Zanzibar using flying robots.

2016-10-15-17-26-23

Tide starts rushing back in. It’s important to take the moon into account when mapping coastlines, as the tide can change drastically during a single flight and thus affect the stitching process.

The content above is cross-posted from WeRobotics.

Using Swimming Robots to Warn Villages of Himalayan Tsunamis

Cross-posted from National Geographic 

Climate change is having a devastating impact on the Himalaya. On the Ngozumpa glacier, one of the largest and longest in the region, hundreds of supraglacial lakes dot the glacier surface. One lake in particular is known for its continuous volume purges on an annual basis. Near the start of the monsoon this summer, in less than 48 hours, it loses enough water to fill over 40 Olympic-sized swimming pools. To make matters worse, these glacial lakes act like cancers: they consume Himalayan glaciers from the inside out, making some of them melt twice as fast. As a result, villages down-valley from these glacial lakes are becoming increasingly prone to violent flash floods, which locals call Himalayan Tsunamis.

To provide early warnings of these flash floods requires that we collect a lot more geophysical and hydrologic information on these glacial lakes. So scientists like Ulyana (co-author) are racing to understand exactly how these glacial lakes form and grow, and how they’re connected to each other through seemingly secret subterranean channels. We need to know how deep and steep these lakes are, what the lake floors look like and of what materials they are composed (e.g., mud, rock, bare ice).

Ulyana, her colleagues and a small local team of Sherpa have recently started using autonomous swimming robots to automatically map lake floors and look for cracks that may trigger mountain tsunamis. Using robotics to do this is both faster and more accurate than having humans take the measurements. What’s more, robots are significantly safer. Indeed, even getting near these lakes (let alone in them!) is dangerous enough due to unpredictable collapses of ice called calving and large boulders rolling off of surrounding ice cliffs and into the lakes below. Just imagine being on a small inflatable boat floating on ice-cold water when one of those icefalls happen.

We (Ulyana and Patrick) are actively looking to utilize diving robots as well—specifically the one in the video footage below. This OpenROV Trident robot will enable us to get to the bottom of these glacial lakes to identify deepening ‘hotspots’ before they’re visible from the lake’s surface or from the air. Our plan next year is to pool our efforts, bringing diving, swimming and flying robots to Nepal so we can train our partners—Sherpas and local engineers—on how to use these robotic solutions to essentially take the ‘pulse’ of the changing Himalaya. This way they’ll be able to educate as well as warn nearby villages before the next mountain floods hit.

We plan to integrate these efforts with WeRobotics (co-founded by co-author Patrick) and in particular with the local robotics lab that WeRobotics is already setting up in Kathmandu. This lab has a number of flying robots and trained Nepali engineers. To learn more about how these flying robots are being used in Nepal, check out the pictures here.

We’ll soon be adding diving robots to the robotic lab’s portfolio in Nepal thanks to WeRobotics’s partnership with OpenROV. What’s more, all WeRobotics labs have an expressed goal of spinning off  local businesses that offer robotics as services. Thus, the robotics start-up that spins off from our lab in Nepal will offer a range of mapping services using both flying and diving robots. As such, we want to create local jobs that use robotics (jobs that local partners want!) so that our Nepali friends can make a career out of saving their beautiful mountains.  

Please do get in touch if you’d like to get involved or support in other ways! Email us ulyana@scienceinthewild.com and patrick@werobotics.org

How to Democratize Humanitarian Robotics

Our world is experiencing an unprecedented shift from manually controlled technologies to increasingly intelligent and autonomous systems powered by artificial intelligence (AI). I believe that this radical shift in both efficiency and productivity can have significant positive social impact when it is channeled responsibly, locally and sustainably.

WeRobotics_Logo_New

This is why my team and I founded WeRobotics, the only organization fully dedicated to accelerating and scaling the positive impact of humanitarian, development and environmental projects through the appropriate use of AI-powered robotics solutions. I’m thrilled to announce that the prestigious Rockefeller Foundation shares our vision—indeed, the Foundation has just awarded WeRobotics a start-up grant to take Humanitarian Robotics to the next level. We’re excited to leverage the positive power of robotics to help build a more resilient world in line with Rockefeller’s important vision.

Print

Aerial Robotics (drones/UAVs) represent the first wave of robotics to impact humanitarian sectors by disrupting traditional modes of data collection and cargo delivery. Both timely data and the capacity to act on this data are integral to aid, development and environmental projects. This is why we are co-creating and co-hosting global network of “Flying Labs”; to transfer appropriate aerial robotics solutions and relevant skills to outstanding local partners in developing countries who need these the most.

Our local innovation labs also present unique opportunities for our Technology Partners—robotics companies and institutes. Indeed, our growing network of Flying Labs offer a multitude of geographical, environmental and social conditions for ethical social good projects and responsible field-testing; from high-altitude glaciers and remote archipelagos experiencing rapid climate change to dense urban environments in the tropics subject to intense flooding and endangered ecosystems facing cascading environmental risks.

The Labs also provide our Technology Partners with direct access to local knowledge, talent and markets, and in turn provide local companies and entrepreneurs with facilitated access to novel robotics solutions. In the process, our local partners become experts in different aspects of robotics, enabling them to become service providers and drive new growth through local start-up’s and companies. The Labs thus seek to offer robotics-as-a-service across multiple local sectors. As such, the Labs follow a demand-driven social entrepreneurship model designed to catalyze local businesses while nurturing learning and innovation.

Of course, there’s more to robotics than just aerial robotics. This is why we’re also exploring the use of AI-powered terrestrial and maritime robotics for data collection and cargo delivery. We’ll add these solutions to our portfolio as they become more accessible in the future. In the meantime, sincerest thanks to the Rockefeller Foundation for their trust and invaluable support. Big thanks also to our outstanding Board of Directors and to key colleagues for their essential feed-back and guidance.

WeRobotics: Democratizing the Fourth Industrial Revolution

I just gave the opening Keynote at the prestigious 2016 International Drones & Robotics for Good Awards in Dubai. What an honor to keynote this truly unique event for a second time and return to the outstanding venue pictured below. And if that wasn’t exciting enough, the organizing team of the awards kindly invited us to launch our new international initiative, WeRobotics, which seeks to scale the impact of “Robotics for Good” in humanitarian aid, global development and environmental protection.

One reason why I’m so passionate about this new initiative is because it focuses explicitly on empowering local partners in developing countries with appropriate robotics solutions based on their needs and priorities. Our aim is to transfer both relevant skills and intelligent robotics solutions to our local partners so they can scale the impact of their own aid, development and environmental projects. In so doing, our local partners become an increasingly skilled, local workforce; one ready to meet the growing demand for robotics as a service in their countries. In sum, we seek to democratize the Fourth Industrial Revolution and thus reduce the inequality that comes with disruptive technologies.

Announcing the launch of a new global initiative is of course the easiest part. The hard work begins now in growing a global network of labs – Flying Labs – with leading technology partners and outstanding local partners in Africa, Asia and Latin America. Here’s how you can get involved and join this unique new effort. Onwards!