Tag Archives: Rockefeller

Global Thought Leadership in Social Sector Robotics

Cross-posted from WeRobotics

“I’ve been to countless remote sensing conferences over the past 30 years but WeRobotics Global absolutely ranks as the best event I’ve been to.” – Remote Sensing Expert

“The event was really mind-blowing. I’ve participated in many workshops over the past 20 years. WeR Global was by far the most insightful and practical. It is also amazing how closely together everyone is working — irrespective of who is working where (NGO, UN, private sector, donor). I’ve never seen such a group of people come together this away.” – Humanitarian Professional

“WeRobotics Global is completely different to any development meeting or workshop I’ve been to in recent years. The discussions flowed seamlessly between real world challenges, genuine bottom-up approaches and appropriate technology solutions. Conversations were always practical and strikingly transparent. This was a highly unusual event.” – International Donor

WeRobotics Global has become a premier forum for social good robotics. The feedback featured above was unsolicited. On June 1, 2017, we convened our first, annual global event, bringing together 34 organizations to New York City (full list below) to shape the global agenda and future use of robotics in the social good sector. WeRobotics Global was kindly hosted by Rockefeller, the first donor to support our efforts. They opened the event with welcome remarks and turned it over to Patrick Meier from WeRobotics who provided an overview of WeRobotics and set the big picture context for social robotics.

The first panel featured our Flying Labs Coordinators from Tanzania (Yussuf), Peru (Juan) and Nepal (Uttam). Each shared the hard work they’ve been doing over the past 6-10 months on localizing and applying robotics solutions. Yussuf spoke about the lab’s use of aerial robotics for disaster damage assessment following the earthquake in Bukoba and for coastal monitoring, environmental monitoring and forestry management. He emphasized the importance of community engagement and closed with new projects that Tanzania Flying Labs is working on such as mangrove monitoring for the Department of Forestry. Juan presented the work of the labs in the Amazon Rainforest, which is a joint effort with the Peruvian Ministry of Health. Together, they are field-testing the use of affordable and locally repairable flying robots for the delivery of antivenom and other medical payload between local clinics and remote villages. Juan noted that Peru Flying Labs is gearing up to carry out a record number of flight tests this summer using a larger and more diverse fleet of flying robots. Last but not least, Uttam showed how Nepal Flying Labs has been using flying robots for agriculture monitoring, damage assessment and mapping of property rights. He also gave an overview of the social entrepreneurship training and business plan competition recently organized by Nepal Flying Labs. This business incubation training has resulted in the launch of 4 new Nepali start-up companies focused on Robotics-as-a-Service. 

The following videos provide highlights from each of our Flying Labs: Tanzania, Peru and Nepal.

The second panel featured talks on sector based solutions starting with the International Federation of the Red Cross (IFRC). The Federation (Aarathi) spoke about their joint project with WeRobotics; looking at cross-sectoral needs for various robotics solutions in the South Pacific. IFRC is exploring at the possibility of launching a South Pacific Flying Labs with a strong focus on women and girls. Pix4D (Lorenzo) addressed the role of aerial robotics in agriculture, giving concrete examples of successful applications while providing guidance to our Flying Labs Coordinators. The Wall Street Journal (Sally) spoke about the use of aerial robotics in news gathering and investigative journalism. She specifically emphasized the importance of using flying robots for storytelling. Duke Marine Labs (David) closed the panel with an overview of their projects in nature conservation and marine life protection, highlighting their use of machine learning for automated feature detection for real-time analysis.

DML

Panel number three addressed the transformation of transportation. UNICEF (Judith) highlighted the field tests they have been carrying out in Malawi; using cargo robotics to transport HIV samples in order to accelerate HIV testing and thus treatment. UNICEF has also launched an air corridor in Malawi to enable further field-testing of flying robots. MSF (Oriol) shared their approach to cargo delivery using aerial robotics. They shared examples from Papua New Guinea (PNG) and emphasized the importance of localizing appropriate robotics solutions that can be maintained locally. MSF also called for the launch of PNG Flying Labs. IAEA was unable to attend WeR Global, so Patrick and Adam from WeRobotics gave the talk instead. WeRobotics is teaming up with IAEA to design and test a release mechanism for sterilized mosquitos in order to reduce the incidence of Zika and other mosquito-borne illnesses. More here. Finally, Llamasoft (Sid) closed the panel with a strong emphasis on the need to collect and share structured data to accurately carry out comparative cost-benefit-analyses of cargo delivery via flying robots versus conventional means. Sid used the analogy of self-driving cars to highlight how problematic the current lack of data vis-a-vis reliably evaluating the impact of cargo robotics.

UM

The fourth and final panel went beyond aerial robotics. Digger (Thomas) showed how they convert heavy construction vehicles into semi-autonomous platforms to clear landmines and debris in conflict zones like Iraq and Syria. Science in the Wild (Ulyana) was alas unable to attend the event, so Patrick from WeRobotics gave the talk instead. This focused on the use of swimming robots to monitor glacial lakes in the Himalaya. The purpose of the effort is to identify cracks in the lake floors before they trigger what local villagers call the tsunamis of the Himalaya. OpenROV (David) gave a talk on the use of diving robots, sharing real-world examples and providing exciting updates on the new Trident diving robot. Planet Labs (Andrew) gave the closing talk, highlighting how space robotics (satellites) are being used across a wide range of social good projects. He emphasized the importance of integrating both aerial and satellite imagery to support social good projects.

Screenshot 2017-06-05 12.36.33

The final session at WeR Global comprised breakout groups to identify next steps for WeRobotics and the social good sector more broadly. Many quality insights and recommendations were shared during the report back. One such recommendation was to hold WeR Global again, and sooner rather than later. So we look forward to organizing WeRobotics Global 2018. We will be providing updates via our blog and email list. We will also use our blog and email list to share select videos of the individual talks from Global 2017 along with their respective slide decks.

In the meantime, a big thanks to all participants and speakers for making Global 2017 such an unforgettable event. And sincerest thanks to the Rockefeller Foundation for hosting us at their headquarters in New York City.


Organizations that participated in WeRobotics Global 2017

UN Office for the Coordination of Humanitarian Affairs (OCHA), International Federation of the Red Cross (IFRC), World Food Program (WFP), UN Development Program (UNDP),Médecins Sans Frontières (MSF), UNICEF, World Bank, World Economic Forum (WEF), Cadasta, Scripps Institute of Oceanography, Duke Marine Labs, Fauna and Flora International, Science in the Wild, Drone Journalism Lab, Wall Street Journal, ESRI, Pix4D, Radiant, OpenAerialMap, Planet Labs, Llamasoft, Amazon Prime Air, senseFly, OpenROV, Digger, UPenn Robotics, Institute of Electrical and Electronics Engineers (IEEE), Rockefeller Foundation, Gates Foundation, Omidyar Network, Hewlett Foundation, USAID and Inter-American Development Bank (IADB).

How to Democratize Humanitarian Robotics

Our world is experiencing an unprecedented shift from manually controlled technologies to increasingly intelligent and autonomous systems powered by artificial intelligence (AI). I believe that this radical shift in both efficiency and productivity can have significant positive social impact when it is channeled responsibly, locally and sustainably.

WeRobotics_Logo_New

This is why my team and I founded WeRobotics, the only organization fully dedicated to accelerating and scaling the positive impact of humanitarian, development and environmental projects through the appropriate use of AI-powered robotics solutions. I’m thrilled to announce that the prestigious Rockefeller Foundation shares our vision—indeed, the Foundation has just awarded WeRobotics a start-up grant to take Humanitarian Robotics to the next level. We’re excited to leverage the positive power of robotics to help build a more resilient world in line with Rockefeller’s important vision.

Print

Aerial Robotics (drones/UAVs) represent the first wave of robotics to impact humanitarian sectors by disrupting traditional modes of data collection and cargo delivery. Both timely data and the capacity to act on this data are integral to aid, development and environmental projects. This is why we are co-creating and co-hosting global network of “Flying Labs”; to transfer appropriate aerial robotics solutions and relevant skills to outstanding local partners in developing countries who need these the most.

Our local innovation labs also present unique opportunities for our Technology Partners—robotics companies and institutes. Indeed, our growing network of Flying Labs offer a multitude of geographical, environmental and social conditions for ethical social good projects and responsible field-testing; from high-altitude glaciers and remote archipelagos experiencing rapid climate change to dense urban environments in the tropics subject to intense flooding and endangered ecosystems facing cascading environmental risks.

The Labs also provide our Technology Partners with direct access to local knowledge, talent and markets, and in turn provide local companies and entrepreneurs with facilitated access to novel robotics solutions. In the process, our local partners become experts in different aspects of robotics, enabling them to become service providers and drive new growth through local start-up’s and companies. The Labs thus seek to offer robotics-as-a-service across multiple local sectors. As such, the Labs follow a demand-driven social entrepreneurship model designed to catalyze local businesses while nurturing learning and innovation.

Of course, there’s more to robotics than just aerial robotics. This is why we’re also exploring the use of AI-powered terrestrial and maritime robotics for data collection and cargo delivery. We’ll add these solutions to our portfolio as they become more accessible in the future. In the meantime, sincerest thanks to the Rockefeller Foundation for their trust and invaluable support. Big thanks also to our outstanding Board of Directors and to key colleagues for their essential feed-back and guidance.

Developing Guidelines for Humanitarian UAV Missions

New: The revised Code of Conduct and Guidelines are now publicly available as part of an open consultative process that will conclude on October 10th. We thus invite comments on the draft guidelines here (Google Doc). Please note that only feedback provided via this Google Form will be reviewed. We’ll be running an open Webinar on September 16th to discuss the guidelines in more detail.


The Humanitarian UAV Network (UAViators) recently organized a 3-day Policy Forum on Humanitarian UAVs. The mission of UAViators is to promote the safe, coordinated and effective use of UAVs in a wide range of humanitarian settings. The Forum, the first of it’s kind, was generously sponsored and hosted by the Rockefeller Foundation at their conference center in Bellagio, Italy. The aerial panoramic photograph below was captured by UAV during the Forum.

EricChengBellagio

UAViators brought together a cross-section of experts from the UN Office for the Coordination of Humanitarian Affairs (OCHA), UN Refugee Agency (UNHCR), UN Department for Peacekeeping Operations (DPKO), World Food Program (WFP), International Committee of the Red Cross (ICRC), American Red Cross, European Commission’s Humanitarian Aid Organization (ECHO), Medair, Humanitarian OpenStreetMap, ICT for Peace Foundation (ICT4Peace), DJI, BuildPeace, Peace Research Institute, Oslo (PRIO), Trilateral Research, Harvard University, Texas A&M, University of Central Lancashire, École Polytechnique Fédérale de Lausanne (EPFL), Pepperdine University School of Law and other independent experts. The purpose of the Forum, which I had the distinct pleasure of running: to draft guidelines for the safe, coordinated and effective use of UAVs in humanitarian settings.

Five key sets of guidelines were drafted, each focusing on priority areas where policy has been notably absent: 1) Code of Conduct; 2) Data Ethics; 3) Community Engagement; 4) Principled Partnerships; and 5) Conflict Sensitivity. These five policy areas were identified as priorities during the full-day Humanitarian UAV Experts Meeting co-organized at the UN Secretariat in New York by UAViators and OCHA (see summary here). After 3 very long days of deliberation in Bellagio, we converged towards an initial draft set of guidelines for each of the key areas. There was certainly no guarantee that this convergence would happen, so I’m particularly pleased and very grateful to all participants for their hard work. Indeed, I’m reminded of Alexander Aleinikoff (Deputy High Commissioner in the Office of UNHCR) who defines innovation as “dynamic problem solving among friends.” The camaraderie throughout the long hours had a lot to do with the positive outcome. Conferences typically take a group photo of participants; we chose to take an aerial video instead:

Of course, this doesn’t mean we’re done. The most immediate next step is to harmonize each of the guideline documents so that they “speak” to each other. We’ll then solicit internal institutional feedback from the organizations that were represented in Bellagio. Once this feedback has been considered and integrated where appropriate, we will organize a soft public launch of the guidelines in August 2015. The purpose of this soft launch is to actively solicit feedback from the broader humanitarian community. We plan to hold Webinars in August and September to invite this additional feedback. The draft guidelines will be further reviewed in October at the 2015 Humanitarian UAV Experts Meeting, which is being hosted at MIT and co-organized by UAViators, OCHA and the World Humanitarian Summit (WHS).

We’ll then review all the feedback received since Bellagio to produce the “final” version of the guidelines, which will be presented to donors and humanitarian organizations for public endorsement. The guidelines will be officially launched at the World Humanitarian Summit in 2016. In the meantime, these documents will serve as best practices to inform both humanitarian UAV trainings and missions. In other words, they will already serve to guide the safe, coordinated and effective use of UAVs in humanitarian settings. We will also use these draft guidelines to hold ourselves accountable. To be sure, humanitarian innovation is not simply about the technology; humanitarian innovation is also about the processes that enable the innovative use of emerging technologies.

While the first text message (SMS) was sent in 1992, it took 20 years (!) until a set of guidelines were developed to inform the use of SMS in disaster response. I’m relieved that we won’t have to wait until 2035 to produce UAV guidelines. Yes, the evidence base for the added value of UAVs in humanitarian missions is still thin, which is why it is all the more remarkable that forward-thinking guidelines are already being drafted. As several participants noted during the Forum, “The humanitarian community completely missed the boat on the mobile phone revolution. It is vital that we not make this same mistake again with newer, emerging technologies.” As such, the question for everyone at the Forum was not whether UAVs will have a significant impact, but rather what guidelines are needed now to guide the impact that this new technology will inevitably have on future humanitarian efforts.

The evidence base is necessarily thin since UAVs are only now emerging as a potential humanitarian technology. There is still a lot of learning and documenting to be done. The Humanitarian UAV Network has already taken on this task and will continue to enable learning and catalyze information sharing by convening expert meetings and documenting lessons learned in collaboration with key partners. The Network will also seek to partner with select groups on strategic projects with the aim of expanding the evidence base. In sum, I think we’re on the right track, and staying on the right track will require a joint and sustained effort with a cross-section of partners and stakeholders. To be sure, UAViators cannot accomplish the above alone. It took 22 dedicated experts and 3 long days to produce the draft guidelines. So consider this post an open invitation to join these efforts as we press on to make the use of UAVs in humanitarian crises safer, more coordinated and more effective.

In the meantime, a big thanks once again to all the experts who joined us for the Forum, and equally big thanks to the team at the Rockefeller Foundation for graciously hosting us in Bellagio.

Social Media Generates Social Capital: Implications for City Resilience and Disaster Response

A new empirical and peer-reviewed study provides “the first evidence that online networks are able to produce social capital. In the case of bonding social capital, online ties are more effective in forming close networks than theory predicts.” Entitled, “Tweeting Alone? An Analysis of Bridging and Bonding Social Capital in Online Networks,” the study analyzes Twitter data generated during three large events: “the Occupy movement in 2011, the IF Campaign in 2013, and the Chilean Presidential Election of the same year.”

cityres

What is the relationship between social media and social capital formation? More specifically, how do connections established via social media—in this case Twitter—lead to the formation of two specific forms of social capital, bridging and bonding capital? Does the interplay between bridging and bonding capital online differ to what we see in face-to-face world interactions?

“Bonding social capital exists in the strong ties occurring within, often homogeneous, groups—families, friendship circles, work teams, choirs, criminal gangs, and bowling clubs, for example. Bonding social capital acts as a social glue, building trust and norms within groups, but also potentially increasing intolerance and distrust of out-group members. Bridging social capital exists in the ties that link otherwise separate, often heterogeneous, groups—so for example, individuals with ties to other groups, messengers, or more generically the notion of brokers. Bridging social capital allows different groups to share and exchange information, resources, and help coordinate action across diverse interests.” The authors emphasize that “these are not either/or categories, but that in well-functioning societies the two types or dimensions develop together.”

The study uses social network analysis to measure bonding and bridging social capital. More specifically, they use two associated metrics as indicators of social capital: closure and brokerage. “Closure refers to the level of connectedness between particular groups of members within a broader network and encourages the formation of trust and collaboration. Brokerage refers to the existence of structural holes within a network that are ’bridged’ by a particular member of the network. Brokerage permits the transmission of information across the entire network. Social capital, then, is comprised of the combination of these two elements, which interact over time.”

The authors thus analyze the “observed values for closure and brokerage over time and compare them with different simulations based on theoretical network models to show how they compare to what we would expect offline. From this, [they provide an evaluation of the existence and formation of social capital in online networks.”

The results demonstrate that “online networks show evidence of social capital and these networks exhibit higher levels of closure than what would be expected based on theoretical models. However, the presence of organizations and professional brokers is key to the formation of bridging social capital. Similar to traditional (offline) conditions, bridging social capital in online networks does not exist organically and requires the purposive efforts of network members to connect across different groups. Finally, the data show interaction between closure and brokerage goes in the right direction, moving and growing together.”

These conclusions suggest that the same metrics—closure and brokerage—can be used to monitor “City Resilience” before, during and after major disasters. This is of particular interest to me since my team and I at QCRI are collaborating with the Rockefeller Foundation’s 100 Resilient Cities initiative to determine whether social media can indeed help monitor (proxy indicators of) resilience. Recent studies have shown that changes in employment, economic activity and mobility—each of which is are drivers of resilience—can be gleamed from social media.

While more research is needed, the above findings are compelling enough for us to move forward with Rockefeller on our joint project. So we’ll be launching AIRS in early 2015. AIRS, which stands for “Artificial Intelligence for Resilient Societies” is a free and open source platform specifically designed to enable Rockefeller’s partners cities to monitor proxy indicators of resilience on Twitter.

Bio

See also:

  • Using Social Media to Predict Disaster Resilience [link]
  • Social Media = Social Capital = Disaster Resilience? [link]
  • Does Social Capital Drive Disaster Resilience? [link]
  • Digital Social Capital Matters for Resilience & Response [link]

Latest Findings on Disaster Resilience: From Burma to California via the Rockefeller Foundation

I’ve long been interested in disaster resilience particularly when considered through the lens of self-organization. To be sure, the capacity to self-organize is an important feature of resilient societies. So what facilitates self-organization? There are several factors, of course, but the two I’m most interested in are social capital and communication technologies. My interest in disaster resilience also explains why one of our Social Innovation Tracks at QCRI is specifically focused on resilience. So I’m always on the lookout for new research on resilience. The purpose of this blog post is to summarize the latest insights.

Screen Shot 2014-05-12 at 4.23.33 PM

This new report (PDF) on Burma assesses the influence of social capital on disaster resilience. More specifically, the report focuses on the influence of bonding, bridging and linking social capital on disaster resilience in remote rural communities in the Ayerwaddy Region of Myanmar. Bonding capital refers to ties that are shared between individuals with common characteristics characteristics such as religion or ethnicity. Bridging capital relates to ties that connect individuals with those outside their immediate communities. These ties could be the result of shared geographical space, for example. Linking capital refers to vertical links between a community and individuals or groups outside said community. The relationship between a village and the government or a donor and recipients, for example.

As the report notes, “a balance of bonding, bridging and linking capitals is important of social and economic stability as well as resilience. It will also play a large role in a community’s ability to reduce their risk of disaster and cope with external shocks as they play a role in resource management, sustainable livelihoods and coping strategies.” In fact, “social capital can be a substitute for a lack of government intervention in disaster planning, early warning and recovery.” The study also notes that “rural communities tend to have stronger social capital due to their geographical distance from government and decision-making structures necessitating them being more self-sufficient.”

Results of the study reveal that villages in the region are “mutually supportive, have strong bonding capital and reasonably strong bridging capital […].” This mutual support “plays a part in reducing vulnerability to disasters in these communities.” Indeed, “the strong bonding capital found in the villages not only mobilizes communities to assist each other in recovering from disasters and building community coping mechanisms, but is also vital for disaster risk reduction and knowledge and information sharing. However, the linking capital of villages is “limited and this is an issue when it comes to coping with larger scale problems such as disasters.”

sfres

Meanwhile, in San Francisco, a low-income neighborhood is  building a culture of disaster preparedness founded on social capital. “No one had to die [during Hurricane Katrina]. No one had to even lose their home. It was all a cascading series of really bad decisions, bad planning, and corrupted social capital,” says Homsey, San Francisco’s director of neighborhood resiliency who spearheads the city’s Neighborhood Empowerment Network (NEN). The Network takes a different approach to disaster preparedness—it is reflective, not prescriptive. The group also works to “strengthen the relationships between governments and the community, nonprofits and other agencies [linking capital]. They make sure those relationships are full of trust and reciprocity between those that want to help and those that need help.” In short, they act as a local Match.com for disaster preparedness and response.

Providence Baptist Church of San Francisco is unusual because unlike most other American churches, this one has a line item for disaster preparedness. Hodge, who administrates the church, takes issue with the government’s disaster plan for San Francisco. “That plan is to evacuate the city. Our plan is to stay in the city. We aren’t going anywhere. We know that if we work together before a major catastrophe, we will be able to work together during a major catastrophe.” This explains why he’s teaming up with the Neighborhood Network (NEN) which will “activate immediately after an event. It will be entirely staffed and managed by the community, for the community. It will be a hyper-local, problem-solving platform where people can come with immediate issues they need collective support for,” such as “evacuations, medical care or water delivery.”

Screen Shot 2014-05-12 at 4.27.06 PM

Their early work has focused on “making plans to protect the neighborhood’s most vulnerable residents: its seniors and the disabled.” Many of these residents have thus received “kits that include a sealable plastic bag to stock with prescription medication, cash, phone numbers for family and friends. They also have door-hangers to help speed up search-and-rescue efforts (above pics).

Lastly, colleagues at the Rockefeller Foundation have just released their long-awaited City Resilience Framework after several months of extensive fieldwork, research and workshops in six cities: Cali, Columbia; Concepción, Chile; New Orleans, USA; Cape Town, South Africa; Surat, India; and Semarang, Indonesia. “The primary purpose of the fieldwork was to understand what contributes to resilience in cities, and how resilience is understood from the perspective of different city stakeholder groups in different contexts. The results are depicted in the graphic below, which figures the 12 categories identified by Rockefeller and team (in yellow).

City Resilience Framework

These 12 categories are important because “one must be able to relate resilience to other properties that one has some means of ascertaining, through observation.” The four categories that I’m most interested in observing are:

Collective identity and mutual support: this is observed as active community engagement, strong social networks and social integration. Sub-indicators include community and civic participation, social relationships and networks, local identity and culture and integrated communities.

Empowered stakeholders: this is underpinned by education for all, and relies on access to up-to-date information and knowledge to enable people and organizations to take appropriate action. Sub-indicators include risk monitoring & alerts and communication between government & citizens.

Reliable communications and mobility: this is enabled by diverse and affordable multi-modal transport systems and information and communication technology (ICT) networks, and contingency planning. Sub-indicators include emergency communication services.

Effective leadership and management: this relates to government, business and civil society and is recognizable in trusted individuals, multi-stakeholder consultation, and evidence-based decision-making. Sub-indicators include emergency capacity and coordination.

How am I interested in observing these drivers of resilience? Via social media. Why? Because that source of information is 1) available in real-time; 2) enables two-way communication; and 3) remains largely unexplored vis-a-vis disaster resilience. Whether or not social media can be used as a reliable proxy to measure resilience is still very much a  research question at this point—meaning more research is required to determine whether social media can indeed serve as a proxy for city resilience.

As noted above, one of our Social Innovation research tracks at QCRI is on resilience. So we’re currently reviewing the list of 32 cities that the Rockefeller Foundation’s 100 Resilient Cities project is partnering with to identify which have a relatively large social media footprint. We’ll then select three cities and begin to explore whether collective identity and mutual support can be captured via the social media activity in each city. In other words, we’ll be applying data science & advanced computing—specifically computational social science—to explore whether digital data can shed light on city resilience. Ultimately, we hope our research will support the Rockefeller Foundation’s next phase in their 100 Resilient Cities project: the development of a Resilient City Index.

Bio

See also:

  • How to Create Resilience Through Big Data [link]
  • Seven Principles for Big Data & Resilience Projects [link]
  • On Technology and Building Resilient Societies [link]
  • Using Social Media to Predict Disaster Resilience [link]
  • Social Media = Social Capital = Disaster Resilience? [link]
  • Does Social Capital Drive Disaster Resilience? [link]
  • Failing Gracefully in Complex Systems: A Note on Resilience [link]
  • Big Data, Lord of the Rings and Disaster Resilience [link]

Seven Principles for Big Data and Resilience Projects

Authored by Kate Crawford, Patrick MeierClaudia PerlichAmy Luers, Gustavo Faleiros and Jer Thorp, 2013 PopTech & Rockefeller Foundation Bellagio Fellows

Update: See also “Big Data, Communities and Ethical Resilience: A Framework for Action” written by the above Fellows and available here (PDF).

Bellagio Fellows

The following is a draft “Code of Conduct” that seeks to provide guidance on best practices for resilience building projects that leverage Big Data and Advanced Computing. These seven core principles serve to guide data projects to ensure they are socially just, encourage local wealth- & skill-creation, require informed consent, and be maintainable over long timeframes. This document is a work in progress, so we very much welcome feedback. Our aim is not to enforce these principles on others but rather to hold ourselves accountable and in the process encourage others to do the same. Initial versions of this draft were written during the 2013 PopTech & Rockefeller Foundation workshop in Bellagio, August 2013.

1. Open Source Data Tools

Wherever possible, data analytics and manipulation tools should be open source, architecture independent and broadly prevalent (R, python, etc.). Open source, hackable tools are generative, and building generative capacity is an important element of resilience. Data tools that are closed prevent end-users from customizing and localizing them freely. This creates dependency on external experts which is a major point of vulnerability. Open source tools generate a large user base and typically have a wider open knowledge base. Open source solutions are also more affordable and by definition more transparent. Open Data Tools should be highly accessible and intuitive to use by non-technical users and those with limited technology access in order to maximize the number of participants who can independently use and analyze Big Data.

2. Transparent Data Infrastructure

Infrastructure for data collection and storage should operate based on transparent standards to maximize the number of users that can interact with the infrastructure. Data infrastructure should strive for built-in documentation, be extensive and provide easy access. Data is only as useful to the data scientist as her/his understanding of its collection is correct. This is critical for projects to be maintained over time, regardless of team membership, otherwise projects will collapse when key members leave. To allow for continuity, the infrastructure has to be transparent and clear to a broad set of analysts – independent of the tools they bring to bear. Solutions such as hadoop, JSON formats and the use of clouds are potentially suitable.

3. Develop and Maintain Local Skills

Make “Data Literacy” more widespread. Leverage local data labor and build on existing skills. The key and most constraint ingredient to effective data solutions remains human skill/knowledge and needs to be retained locally. In doing so, consider cultural issues and language. Catalyze the next generation of data scientists and generate new required skills in the cities where the data is being collected. Provide members of local communities with hands-on experience; people who can draw on local understanding and socio-cultural context. Longevity of Big Data for Resilience projects depends on the continuity of local data science teams that maintain an active knowledge and skills base that can be passed on to other local groups. This means hiring local researchers and data scientists and getting them to build teams of the best established talent, as well as up-and-coming developers and designers. Risks emerge when non-resident companies are asked to spearhead data programs that are connected to local communities. They bring in their own employees, do not foster local talent over the long-term, and extract value from the data and the learning algorithms that are kept by the company rather than the local community.

4. Local Data Ownership

Use Creative Commons and licenses that state that data is not to be used for commercial purposes. The community directly owns the data it generates, along with the learning algorithms (machine learning classifiers) and derivatives. Strong data protection protocols need to be in place to protect identities and personally identifying information. Only the “Principle of Do No Harm” can trump consent, as explicitly stated by the International Committee of the Red Cross’s Data Protection Protocols (ICRC 2013). While the ICRC’s data protection standards are geared towards humanitarian professionals, their core protocols are equally applicable to the use of Big Data in resilience projects. Time limits on how long the data can be used for should be transparently stated. Shorter frameworks should always be preferred, unless there are compelling reasons to do otherwise. People can give consent for how their data might be used in the short to medium term, but after that, the possibilities for data analytics, predictive modelling and de-anonymization will have advanced to a state that cannot at this stage be predicted, let alone consented to.

5. Ethical Data Sharing

Adopt existing data sharing protocols like the ICRC’s (2013). Permission for sharing is essential. How the data will be used should be clearly articulated. An opt in approach should be the preference wherever possible, and the ability for individuals to remove themselves from a data set after it has been collected must always be an option. Projects should always explicitly state which third parties will get access to data, if any, so that it is clear who will be able to access and use the data. Sharing with NGOs, academics and humanitarian agencies should be carefully negotiated, and only shared with for-profit companies when there are clear and urgent reasons to do so. In that case, clear data protection policies must be in place that will bind those third parties in the same way as the initial data gatherers. Transparency here is key: communities should be able to see where their data goes, and a complete list of who has access to it and why.

6. Right Not To Be Sensed

Local communities have a right not to be sensed. Large scale city sensing projects must have a clear framework for how people are able to be involved or choose not to participate. All too often, sensing projects are established without any ethical framework or any commitment to informed consent. It is essential that the collection of any sensitive data, from social and mobile data to video and photographic records of houses, streets and individuals, is done with full public knowledge, community discussion, and the ability to opt out. One proposal is the #NoShare tag. In essence, this principle seeks to place “Data Philanthropy” in the hands of local communities and in particular individuals. Creating clear informed consent mechanisms is a requisite for data philanthropy.

7. Learning from Mistakes

Big Data and Resilience projects need to be open to face, report, and discuss failures. Big Data technology is still very much in a learning phase. Failure and the learning and insights resulting from it should be accepted and appreciated. Without admitting what does not work we are not learning effectively as a community. Quality control and assessment for data-driven solutions is notably harder than comparable efforts in other technology fields. The uncertainty about quality of the solution is created by the uncertainty inherent in data. Even good data scientist are struggling to assess the upside potential of incremental efforts on the quality of a solution. The correct analogy is more one a craft rather a science. Similar to traditional crafts, the most effective way is to excellence is to learn from ones mistakes under the guidance of a mentor with a collective knowledge of experiences of both failure and success.

Data Science for 100 Resilient Cities

The Rockefeller Foundation recently launched a major international initiative called “100 Resilient Cities.” The motivation behind this global project stems from the recognition that cities are facing increasing stresses driven by the unprecedented pace urbanization. More than 75% of people expected to live in cities by 2050. The Foundation is thus rightly concerned: “As natural and man-made shocks and stresses grow in frequency, impact and scale, with the ability to ripple across systems and geographies, cities are largely unprepared to respond to, withstand, and bounce back from disasters” (1).

Resilience is the capacity to self-organize, and smart self-organization requires social capital and robust feedback loops. I’ve discussed these issues and related linkages at lengths in the posts listed below and so shan’t repeat myself here. 

  • How to Create Resilience Through Big Data [link]
  • On Technology and Building Resilient Societies [link]
  • Using Social Media to Predict Disaster Resilience [link]
  • Social Media = Social Capital = Disaster Resilience? [link]
  • Does Social Capital Drive Disaster Resilience? [link]
  • Failing Gracefully in Complex Systems: A Note on Resilience [link]

Instead, I want to make a case for community-driven “tactical resilience” aided (not controlled) by data science. I came across the term “tactical urbanism” whilst at the “The City Resilient” conference co-organized by PopTech & Rockefeller in June. Tactical urbanism refers to small and temporary projects that demonstrate what could be. We also need people-centered tactical resilience initiatives to show small-scale resilience in action and demonstrate what these could mean at scale. Data science can play an important role in formulating and implementing tactical resilience interventions and in demonstrating their resulting impact at various scales.

Ultimately, if tactical resilience projects do not increase local capacity for smart and scalable self-organization, then they may not render cities more resilient. “Smart Cities” should mean “Resilient Neighborhoods” but the former concept takes a mostly top-down approach focused on the physical layer while the latter recognizes the importance of social capital and self-organization at the neighborhood level. “Indeed, neighborhoods have an impact on a surprisingly wide variety of outcomes, including child health, high-school graduation, teen births, adult mortality, social disorder and even IQ scores” (1).

So just like IBM is driving the data science behind their Smart Cities initiatives, I believe Rockefeller’s 100 Resilient Cities grantees would benefit from similar data science support and expertise but at the tactical and neighborhood level. This explains why my team and I plan to launch a Data Science for Resilience Program at the Qatar Foundation’s Computing Research Institute (QCRI). This program will focus on providing data science support to promising “tactical resilience” projects related to Rockefeller’s 100 Resilient Cities initiative.

The initial springboard for these conversations will be the PopTech & Rockefeller Fellows Program on “Community Resilience Through Big Data and Technology”. I’m really honored and excited to have been selected as one of the PopTech and Rockefeller Fellows to explore the intersections of Big Data, Technology and Resilience. As mentioned to the organizers, one of my objectives during this two-week brainstorming session is to produce a joint set of “tactical resilience” project proposals with well articulated research questions. My plan is to select the strongest questions and make them the basis for our initial data science for resilience research at QCRI.

bio