Tag Archives: drones

Back to the Future: Drones in Humanitarian Action

A devastating earthquake struck Nepal on April 25th, 2015. The humanitarian drone response to the earthquake was almost entirely foreign-led, top-down and techno-centric. International drone teams self-deployed and largely ignored the humanitarian drone code of conduct. Many had never heard of humanitarian principles and most had no prior experience in disaster response. Some were arrested by local authorities. At best, these foreign drone teams had little to no impact. At worse, they violated the principle of Do No Harm. Nepal Flying Labs was co-created five months after the earthquake, on September 25th, 2015, to localize the responsible and effective use of drones for positive social impact. Today, Flying Labs are operational in 25 countries across Asia, Africa and Latin America.

This month, on behalf of the World Food Program (WFP), WeRobotics teamed up with Nepal Flying Labs and WFP Nepal to run a 5-day hands-on training and disaster simulation to improve the rapid deployment and coordination of drones in humanitarian action. WeRobotics previously designed and ran similar humanitarian drone trainings and simulations on behalf of WFP (and others) in the Dominican Republic, Peru, Myanmar, Malawi and Mozambique, for example. In fact, WeRobotics has been running humanitarian drone trainings since 2015 both in-person and online.

All 25 Flying Labs typically run their trainings in local languages. As such, the 5-day training in Nepal was largely led by Nepal Flying Labs and run in Nepali. Over 40 participants from 16 Nepali organizations took the training, which included an introduction to drone technologies,  drone photogrammetry, imagery processing, lessons learned and best practices from past humanitarian drone missions, and overviews of codes of conduct, data protection protocols and coordination mechanisms, all drawn from direct operational experience. The training also comprised a series of excellent talks given by Nepali experts who are already engaged in the use of drones in disaster management and other sectors in Nepal. This featured important talks by several officials from the Civil Aviation Authority of Nepal (CAAN). In addition, the training included a co-creation session using design thinking methods during which local experts identified the most promising humanitarian applications of drone technology in Nepal.

Nepal Flying Labs also trained participants on how to fly drones and program drone flights. The drones were rented locally from the Flying Labs and their partners. This hands-on session, kindly hosted by Kathmandu University, was followed by another hands-on session on how to process and analyze aerial imagery. In this session, Nepal Flying Labs introduced participants to Pix4Dreact and Picterra. Pix4Dreact provides an ultra-rapid solution to data processing, allowing humanitarian drone teams to process 1,000 high-resolution aerial images in literally minutes, which is invaluable as this used to take hours. Picterra enables drone teams to quickly analyze aerial imagery by automatically identifying features of interest to disaster responders such as damaged buildings, for example. While Picterra uses deep learning and transfer learning to automate feature detection, users don’t need any background or prior experience in artificial intelligence to make full use of the platform. During the hands on-session, trainers used Picterra to automatically detect buildings in aerial (orthophoto) map of an earthquake-affected area.

After completing a full day of hands-on training, Nepal Flying Labs gave a briefing on the disaster simulation scheduled for the following day. The simulation is the centerpiece of the humanitarian drone trainings run by WeRobotics and Flying Labs. It requires participants to put into practice everything they’ve learned in the training. The simulation consolidates their learning and provides them with important insights on how to streamline their coordination efforts. It is often said that disaster responders train the way they respond and respond they way they train. This is why simulations are absolutely essential.

The simulation was held at Bhumlu Rural Municipality, a 3+ hour drive from Kathmandu. Bhumlu is highly prone to flooding and landslides, which is why it was selected for the simulation and why the Government of Nepal was particularly keen to get high-resolution maps of the area. The disaster simulation was run by Nepal Flying Labs in Nepali. The simulation, first designed by WeRobotics in 2015, consists of three teams (Authorities, Pilots and Analysts) who must work together to identify and physically retrieve colored markers as quickly and safely as possible. The markers, which were placed across Bhumlu prior to participants’ arrival, are typically 1 meter by 1 meter in size, and each color represents an indicator of interest to humanitarians, e.g., Yellow = survivor; Blue = landslide; and Red = disaster damage. Both the colors and the number of different markers are customized based on the local priorities. Below, Nepal Flying Labs Coordinator Uttam Pudasaini hides a yellow marker under a tree prior to the arrival of participants.

Myanmar has held the record for the fastest completion of the simulation since 2017. As such, they’ve held the number one spot and been the gold standard for two years now. The teams in Myanmar, who were trained by WeRobotics, retrieved all markers in just over 4 hours. As such, WeRobotics challenged the teams in Nepal to beat that record and take over the number one spot. They duly obliged and retrieved all markers in a very impressive time of 3 hours and 4 minutes, clenching the number one spot from Myanmar.

On the following and final day of the workshop, Nepal Flying Labs and WeRobotics facilitated an all-hands session to debrief on the simulation, inviting each team and trainee to reflect on lessons learned and share their insights. For example, a feedback loop between the Pilots and Analysis Teams is important so pilots can plan further flights based on the maps produced by the analysts. Like a number of previous simulations run by WeRobotics, the Analysis Team noted that having a portal printer on hand would be ideal. The Pilots Team also suggested that having different colored visibility vests would’ve enabled more rapid field coordination between and within teams by enabling individuals to more quickly identify who is who.

When asked which individuals or group had the most challenging job in the simulation, the consensus was the retrieval group who are part of the Authorities Team and responsible for retrieving the markers after they’ve been geo-located by the Analysis Team. This was particularly interesting given that in all previous simulations run by WeRobotics, the consensus had always been that the Analysis Team had the hardest task. In coming weeks, these insights together with the many others gained from the simulation in Nepal will be added to this document on best practices in humanitarian drone missions.

After the full simulation debrief, Nepal Flying Labs facilitated the final session of the training: a panel discussion on the development of drone regulations to save lives and reduce suffering in Nepal. The panelists included senior officials from Civil Aviation, Home Ministry and Nepal Police. The session was run in Nepali and presented participants with an excellent opportunity to engage with and inform key policymakers. In preparation for this session, Nepal Flying Labs and partners prepared this 3-page policy document (PDF) with priority questions and recommendations, which served as the basis for the Q&A with the panel. This discussion and policy document created a roadmap for next steps which Nepal Flying Labs and partners have pledged to take forward with all stakeholders.


Acknowledgements: WeRobotics and Nepal Flying Labs would like to sincerely thank WFP HQ and WPF Nepal for the kind invitation to run this training and for providing the superb coordination and logistics that made this training so fruitful. WeRobotics and Nepal Flying Labs would also like to express sincere thanks to DroNepal for co-leading the training with Nepal Flying Labs. Sincere thanks to the local communities we worked with during the simulation and to the CAA and local police for granting flight permissions. To all 40+ participants, sincerest thanks for all the energy you brought to the training and for your high levels of engagement throughout each of the 5 days, which significantly enriched the training. Last but certainly not least, sincere thanks to the Belgium Government for funding this training.

Building Cargo Drone Expertise in Papua New Guinea

WeRobotics was recently asked by the Center for Disease Control and Prevention (CDC) to organize a training on medical cargo drones in Papua New Guinea (PNG). The purpose of the training was to engage key stakeholders on the opportunities and challenges of using cargo drones in the wake of PNG’s most recent polio outbreak. An important component of the training was a hands-on demo of cargo drone deliveries. There were three key reasons for making this operational demo part of the training: 1) introduce stakeholders to cargo drone technology and standard operating procedures; 2) test how quickly a cargo drone team could be deployed; 3) test how quickly flight permissions could be secured from PNG’s Civil Aviation Safety Authority (CASA). WeRobotics was given 10 weeks to implement the project. It was completed in 8 weeks.

WeRobotics partnered with two outstanding groups who ensured the project’s complete success: Soli Consultancy and Redwing Labs India. Soli Consultancy are the co-founders of PNG Flying Labs while Redwing Labs is a founding partner of India Flying Labs. Soli Consultancy has extensive experience in aviation regulations and took the lead on securing the flight permissions for the CDC project. They also took the lead on the logistics for the workshop. Redwing Labs is a cargo drone company from India that was recently selected Techstars USA, the biggest VC accelerator program in the world with an acceptance rate of less than 1%. Both Soli and Redwing went well above and beyond to ensure that the extremely tight timeline would be met. The CDC team in PNG lent invaluable support to both Soli and Redwing throughout the very busy 7 weeks leading up to the training and cargo drone flights.

Credit: National Department of Health

Around 40 stakeholders participated in the workshop, representing an important mix of expertise from public health, aviation, and private sectors. The workshop agenda is available here (PDF). The first session comprised talks from senior health officials from PNG, Mr. Berry Ropa and Dr. Mathias Bauri from the National Department of Health. Each speaker reported on the very real difficulties in reaching remote communities in PNG. They both noted that some communities can only be reached by helicopter (costing around USD 2,500 / hour). This was followed by an open discussion between participants reflecting on related challenges and potential ways that drones might be able to address or overcome some of these challenges.

I had the pleasure of leading Session 2. The purpose of this session was to give all participants a solid background in medical cargo drones including use-cases, technologies, deployments, ethical issues, lessons learned and best practices. This 1.5 hour presentation was followed by an open discussion by all stakeholders. The session included a demo of cargo drone boxes by my good colleague Dr. Timothy Amukele and the first public announcement of the launch of PNG Flying Labs, which was very warmly welcomed by local stakeholders. Following the presentation, an open question and answer session allowed participants to move the conversations forward vis-à-vis the PNG context.

Session three was a design-thinking session with a total of 5 breakout groups. Each group was asked to identify specific health projects that they believed could benefit from the use of drones. This meant identify the key health need, where geographically this need was greatest and which stakeholders would be best placed to implement the use of cargo drone deliveries in that context. Participants were then asked to select the one project they considered most compelling for immediate implementation. The results were particularly informative and some detailed enough to develop an initial concept note and proposal for.

In the fourth session, I provided an overview of business models, cost structures, sustainability strategies, and different methodologies to assess the cost-benefit of introducing cargo drone deliveries in a given context. This 45-minute presentation was followed by another open discussion during which participants connected the ideas presented to the PNG context. The fifth and final session was run by Redwing and served as an introduction to drone regulations, safety, standard operating procedures, fail-safe mechanisms and more.

The cargo drone demo day was scheduled for the day after the workshop at Pacific Adventist University. A backup day was set aside in case of rain. Sure enough, there where strong winds with heavy downpour that morning, so the demo day was rescheduled to the following day. Drones can certainly be made more weather proof, this is not a major technical challenge. The question has more to do with cost, since technical modifications and add-on’s necessarily require engineering resources. That said, as one local public health expert at the workshop noted, when there’s a heavy downpour like this in PNG, even 4WD cars will get stuck in muddy roads.

The original plan for the cargo drone demo was to fly from the university to Sogeri National High School through a remote mountainous terrain 17 kilometers away and with an elevation difference of some 1,000 feet. While Redwing complied with regulatory requirements for flight approvals, CASA did not approve flights Beyond Visual Line of Site (BVLOS). They informed us that an American cargo drone company had recently crashed their drone in PNG as part of a project with an international health organization. As such, CASA preferred that the Redwing flights all be conducted within Visual Line of Site, or VLOS. PNG Flying Labs and Soli Consultancy are now following-up with CASA to continue working towards an unmanned aircraft operator’s certificate.

Given that only VLOS flights were permitted, it was decided that the drone would take off from the university, fly large loops within visual line of sight and cover a distance of 17 kilometers in order to simulate the original flight plan displayed above. Vaccine vials were placed in the cargo box along with multiple icepacks and a temperature data logger. The cargo box was then fastened to the cargo drone. The total weight carried was around 680 grams. The temperature going in was around 1.5C.

The Redwing drone is a VTOL or hybrid drone, meaning that it takes off and lands vertically but then transitions to fly like plane. The advantage of hybrid drones is that they can take off and land in narrow places but still have the range of a fixed-wing drone when they transition to forward flight. The demonstration went flawlessly, with the drone covering 24 km in approximately 20 minutes. The cargo drone flew at an average speed of 75 km per hour and at an altitude of 120 meters. The temperature of the cargo was around 7.5C after landing even though there was very minimal insulation. While Redwing did both the takeoff and landings manually, they noted that both could be done autonomously as well regardless of the cargo weight.

Credit: Laurence Korup, Oceanian Multimedia

Sincerest thanks to the following organizations for their partnership and trust: CDC, Gates Foundation, Soli Consulting, Redwing Labs and CASA. We’re very pleased to have launched Papua New Guinea Flying Labs, which is part of the growing South Pacific Flying Labs network. PNG Flying Labs will be introduced more formally in coming weeks and we expect Vanuatu Flying Labs to join the South Pacific Network in the very near future.

WeRobotics is also exploring a number of other medical cargo drone projects in Nepal, Democratic Republic of the Congo (DRC), Cameroon, Uganda and the Dominican Republic. We’ll be sure to share our lessons learned and best practices for those projects that do move forward. So stay tuned for more updates throughout 2019. In the meantime, learn how South Pacific Flying Labs is using cargo drones to help reduce Dengue fever in Fiji, and how Peru Flying Labs and Dominican Republic Flying Labs are using cargo drones for other public health use cases. Also, be sure to sign up for our upcoming online course on Medical Cargo Drones in Public Health.

How Local Drone Pilots Are Reducing Dengue Fever

The dengue fever outbreak in Fiji in 2014 was one of the region’s largest known outbreaks of the mosquito-borne infection. Scientists studying the outbreak believe climate change was a contributing factor: more flooding results in more areas of standing water for longer periods—perfect breeding grounds for mosquitos. According to the World Health Organization’s Regional Office, the islands of the South Pacific are “some of the most vulnerable places on the planet to health effects of climate change.” Unfortunately, existing tools to control these mosquitoes such as insecticide spraying are not efficient and have failed to eliminate dengue as a public health concern. Worldwide, an estimated 390 million human dengue infections occur every year. This explains why ministries of health in the South Pacific expect larger outbreaks. In fact, Fiji experienced another outbreak of dengue fever this year, which once again prompted urgent calls for more effective and preventative solutions.

One such solution may be the use of Wolbachia-treated mosquitos. Wolbachia is a naturally occurring bacteria that prevents mosquitos from transmitting diseases like Zika and dengue. This explains why our partners at the World Mosquito Program (WMP) and the Ministry of Health and Medical Services have been releasing Wolbachia-carrying mosquitos in Fiji. This is done be driving around a town or village with canisters of Wolbachia mosquitoes (W-mosquitoes for short). The driver pulls over by the side of the road every few minutes to release one canister at a time. Over time, Wolbachia becomes established in the local mosquito population. When most of the mosquito population have Wolbachia, local communities in Fiji should be at lower risk of getting dengue, Zika and chikungunya.

Releasing Wolbachia mosquitos “by car” presents a number of challenges, however. First, during the rainy and cyclone seasons, many roads become unusable while pools of standing water breed more mosquitos. What’s more, mosquitos that are released by car may not be uniformly distributed over an area but rather constrained by the local road network. As such, a significant amount of work and time has to go into planning the best routes for cars given these fixed constraints. Lastly, not everyone lives next to a road and so are potentially excluded from public health interventions.

Countries in the region experience severe flooding during Cyclone season

This explains why WMP teamed up with WeRobotics earlier this year. WeRobotics engineers have been busy developing an aerial release mechanism that can be attached to a drone. Combining both the aerial and ground-based release of W-mosquitos is expected to be a lot more effective. The aerial release mechanism can store up to 160,000 W-mosquitos at 5 degrees Celsius and release 200 mosquitos at a time every 50 meters. This is enough to cover an area of four square kilometers. Aerial releases are much faster than ground releases (no traffic, stop lights, pedestrians, etc.) and, unlike cars, drones don’t burn fossil fuels. A drone can cover an area of 10km2 in a couple hours while mosquito releases by car over the same area would require several days. In addition, the use of drones provides far more homogeneous releases and better coverage. Another bonus: drone routes are much easier to plan than car routes.

The mechanism is airborne and ready to release 200 W-mosquitos at a time

A fully operational prototype of the release mechanism is currently being piloted in the South Pacific after 5 months of local community engagement and awareness raising. WeRobotics engineers have already trained local drone pilots with South Pacific Flying Labs and Drone Services Fiji on how to operate the drone and the release mechanism safely and effectively. As such, the local team at Pacific Flying Labs is now taking the lead in piloting the drone and aerial releases as part WMP’s public health intervention in Fiji.

Building local capacity is central to the mission of WeRobotics as is creating local ownership of health, humanitarian, development and environmental projects. The localization of this expertise and technology through the global Flying Labs network leads to more sustainable and impactful projects.

An aerially-released mosquito finds their way to the arm of a WMP colleague

When the pilot project completes this week, South Pacific Flying Labs and partners will have released around half-a-million W-mosquitos. WMP has engaged the help of local community members to host a large network of mosquito traps across the release area to determine how widely, quickly and uniformly these mosquitos have dispersed compared to ground-released mosquitos. W-mosquitos can be distinguished from others because the former have each been dusted with yellow-colored dye. Once our friends at WMP complete their evaluation following of trial, we’ll be able to quantify the added value of complementing ground-based releases with aerial releases. Future trials will seek to optimize the release methods so that mosquito deployments can be achieved across larger areas.


South Pacific Flying Labs is funded by Australia’s Department of Foreign Affairs and Trade (DFAT). The drone component of the mosquito project is funded by the United States Agency for International Development (USAID) through the Combating Zika and Future Threats Grand Challenge. Earlier this year, WeRobotics tested the use of drones for mosquito release in Brazil using a completely different prototype release mechanism.

 

How Drone Natives are Decolonizing Robotics

In 2015, Cyclone Pam devastated the islands of Vanuatu in the South Pacific. In response to the Category 5 Cyclone, I was asked by the World Bank to coordinate a humanitarian drone mission to speed up the damage assessments. But I couldn’t find any local drone pilots at the time, so had to recruit two foreign drone companies from Australia and New Zealand instead. Their drone pilots did a great job under challenging conditions over the course of several weeks. I continue to be in touch with them and continue to learn from them. They’re top notch professionals.

I’m just really tired of seeing videos like the one above. Foreigners with the technology; locals as passive observers. It should of course be the other way around: Locals with the technology and foreigners as passive observers; foreigners holding umbrellas for local drone pilots. Seriously. Why can’t it be the other way around?

Fast forward to 2018. The South Pacific has been battered by an onslaught of major cyclones, no fewer than 4 in almost as many months. Unlike 2015, one local drone pilot deployed to the affected areas to support the relief efforts. Her name is Amrita Lal (pictured below) and she serves as the Coordinator of South Pacific Flying Labs based in Fiji. In deploying with the Red Cross following Cyclone Keni, Amrita became the first local drone pilot to deploy with a National Red Cross Society in the region.

Our mission at WeRobotics is to localize opportunity. We create local opportunities to participate in problem solving, to take the lead in problem solving, to be a real part of the solution, to have meaningful and sustainable impact. By localizing expertise in robotics, we create new opportunities to scale humanitarian aid, sustainable development, public health or nature conservation efforts locally. In so doing, we create local opportunities for professional development and upward mobility. How do we create and sustain these new opportunities? By localizing emerging technologies through our Flying Labs. (We like to call them Wakanda Flying Labs).

Demand for the skills that Amrita and her Flying Labs have is growing. This is the “Fourth Industrial Revolution” (4IR) after all: the rise of Robotics and Artificial Intelligence is reshaping the global labor market, shutting down some job opportunities entirely while creating new ones. This is a disruptive time in human history. And we know from previous industrial revolutions that they create divides between the “have’s” and “have nots”; between the included and the excluded; between those who have access to new opportunities and those who don’t. The First Industrial revolution was powered by the steam engine along with the iron and textile industries. The second was powered by steel, oil and electricity. Digital technologies unleashed the Third Industrial Revolution. Each these revolutions created new opportunities for some (usually in high-income countries), and obliterated existing opportunities for others (usually in low-income countries).

The Digital Divide of the Third Industrial Revolution has created profound inequalities, and the Robotics Divide of the 4IR is already exacerbating these inequalities. (What’s that? You don’t have 3G in your village? Oh. Well sorry, we can’t fly our medical delivery drones to your village without 3G. Can we have our umbrella back?). As my new colleague from Cameroon, Marco Enoh, recently tweeted,

“We forcefully enabled the First Industrial Revolution, were sidelined during the Second Industrial Revolution, we developed dependency in the Third Industrial Revolution… Now the Fourth Industrial Revolution! What are we going to do? Either shape technologies for collective prosperity or forever remain at the lowest levels of global value chains.”

The Fourth Industrial Revolution is creating new jobs in lower-income countries. But these jobs are almost always taken by foreign companies from higher-income countries. Why? Either because the local talent doesn’t exist, or because said local talent is not visible or connected to these new job opportunities. Our Flying Labs serve to overcome these unjust hurdles. Fact is, foreign companies are more expensive to hire. Foreign drone pilots need more time to deploy. They need international flights and hotels. They often don’t know the countries that they’re sent to and rarely know the local languages or customs. This creates an exciting business opportunity for Amrita and Marco, and their colleagues at other Flying Labs in Africa, Asia and Latin America.

Robotics enables new business opportunities because robots enable an entirely new form of mobility—autonomous mobility. Autonomous mobility in the air (flying drones), in the oceans (swimming drones) and on land (driving drones). Mobility gives freedom, which creates new opportunities (think of the automotive revolution). This explains why we are committed to helping our Flying Labs and their partners use autonomous robotics to overcome the challenge of mobility in humanitarian aid, sustainable development, nature conservation and public health. We’ve borrowed some of this language from our new friends at World Bicycle Relief because their approach is similar to ours: It isn’t about the technology—bicycle or drone—it’s about localizing this technology sustainably and respectfully to create new opportunities.

So yes, we localize robotics. But that’s hardly the point. Robotics is simply a means to an end. We localize opportunities to scale local solutions. We localize opportunities to enable direct and local participation in the Fourth Industrial Revolution. This explains why our Flying Labs are directly connected to each other; why Amrita from Pacific Flying Labs recently trained Leka and Team from Tanzania Flying Labs on how to use underwater drones; why Dania, Oscar and Humberto from Panama Flying Labs are working with us to create engineering solutions with Pacific Flying Labs; why Tanzania Flying Labs is helping to incubate Kenya Flying Labs and why Nepal Flying Labs is learning about cargo drones from Flying Labs in Peru and the Dominican Republic. Each of these connections in the Flying Labs network create new opportunities to participate in the Fourth Industrial Revolution.

Amrita was presented with an important opportunity to become the first local, female drone pilot in her region to deploy with a National Red Cross Society. She grabbed it and ran with it. This experience has opened up new opportunities for her and her Flying Labs team in the Pacific. This includes incubating a new hub of Pacific Flying Labs in Vanuatu in coming months. So the next time Vanuatu has to deal with a major tropical cyclone or other consequences of climate change, the World Bank must not hire me or hire any foreign drone pilots to accelerate their damage assessments. No, they should instead hire Amrita and her team of drone natives from Pacific Flying Labs.

New! Online Training for Humanitarian Drone Missions

We’re very pleased to announce the launch of the WeRobotics Online Training Institute. Training is absolutely central to the work and mission of WeRobotics. To date, we have provided our professional trainings exclusively in person. We’ve given these trainings to a numerous professionals across many organizations including the World Food Program (WFP), UN Development Program (UNDP), UNICEF, Catholic Relief Services (CRS), local universities and many national & local stakeholders including National Disaster Management Organizations (NDMOs) in Peru, Myanmar, Malawi, Mozambique, Nepal, Dominican Republic, Maldives, Fiji, Seychelles and beyond.

We’re thrilled to be teaming up with our friends at TechChange to provide this training. Their highly dynamic online training platform is second-to-none. Just last year alone, TechChange trained over 7,000 people from 155 countries on their platform. We’ve been huge fans of TechChange and are grateful to finally have the opportunity to work both with their outstanding team and unique approach to online learning.

Drones in Humanitarian Action

While in-person trainings will absolutely remain central to our work and mission, we’ve realized that a substantial component of these trainings can just as well be provided online and scaled more easily this way. The reason for this is simple: technology is at most 10% of the solution in humanitarian emergencies and many other contexts including public health and environmental protection, for example. Technology is certainly an absolutely crucial 10% of the solution—serving as a multiplier effect—but without a strong understanding of the tasks necessary to use this technology safely, responsibly and effectively (the other 90%), you run the danger of multiplying nonsense and becoming part of the problem rather than the solution. As such we’ve decided to invest a considerable amount of time and energy to convert our offline trainings into online courses in order to train more people on how to use drones more responsibly across a range of sectors.

Our very first online course will focus on Drones in Humanitarian Action: From Coordination to Deployments. The course will be identical to the trainings that we’ve provided to new and seasoned humanitarian professionals around the world. Drones in Humanitarian Action will give participants the training they need to be an important part of the solution during future disaster risk management efforts. The training is instrumental for anyone already engaged or expecting to support disaster response efforts. The course will be of equal interest to participants who want to better understand what it takes to lead humanitarian drone missions safely, responsibly and effectively. As such, the training is ideal for existing drone pilots including pilots working in the commercial drone space. That said, no background in disaster response or drones is required for this foundational course.

Overview of Humanitarian Drone Training

Our online training represents the first ever online professional course specifically dedicated to humanitarian applications of drones. The 7-week training comprises 7 key modules, which cover the following important topics:

  • Drone Technologies and Mission Planning
  • Mapping Drones and Information Products
  • Cargo Drones and New Solutions
  • Humanitarian Principles and Codes of Conduct
  • Survey of Drone Deployments in Humanitarian Aid
  • Humanitarian Drone Missions: Lessons Learned & Best Practices
  • Drones in Humanitarian Action: Localization and Coordination
  • Aerial Data Interpretation and Analysis
  • Future Trends in Drone Technologies and Applications

The online training will also include a dedicated module on Technical Basics of Drone Pilot Certification, which will cover the following topics:

  • Rules of the Air
  • Safety
  • Airspace
  • Flight Permissions
  • Basic Chart Reading
  • Meteorology
  • Aircraft Knowledge
  • Airmanship

The WeRobotics training on Drones in Humanitarian Action are built on the first ever trainings on humanitarian drones provided by the Humanitarian UAV Network (UAViators) between 2015-2016. These professional trainings were given by WeRobotics co-founders Dr. Patrick Meier and Dr. Andrew Schroeder, and included trainees from the United Nations Office for the Coordination of Humanitarian Affairs (UN/OCHA), WFP, International Organization for Migration (IOM), Direct Relief,, NetHope, Medair, Global Medic, USAID, FEMA, AAAS, MIT, European Commission, ACF International, Greenpeace and many more.

Trainers and Expertise

The online training on Drones in Humanitarian Action was prepared by the AidRobotics Team at WeRobotics. The team, Joel Kaiser, Dr. Patrick Meier and Dr. Andrew Schroeder, brings together over 40 years of experience in humanitarian aid and emergencies. Patrick will serve as primary lead for the Online Training.

Joel Kaiser: Over 15 years of field experience in humanitarian assistance and disaster response in over a dozen countries and including 4 years pioneering the humanitarian use of drones. Joel has extensive experience in humanitarian coordination, and advanced studies in emergency management. Prior to WeRobotics, Joel worked as an emergency response specialist with several different humanitarian agencies including the Canadian Red Cross, Food for the Hungry and Medair. Has led disaster response teams in many humanitarian crises including Haiti, Myanmar, Nepal, Philippines, Somalia, Iraq and Syria. Since 2013 these responses have involved the use of drones to improve operational decision-making. Holds an MA in International Development with a focus on Complex Emergencies from Simon Fraser University. Was one of the lead experts running the recent humanitarian drones workshop in Malawi with UNICEF and earlier with WFP in Myanmar. Joel is on the core team of the Humanitarian UAV Network (UAViators) and has played a key role in developing the International Humanitarian UAV Code of Conduct.

Dr. Patrick Meier: Over 15 years of experience in humanitarian technology. Spearheaded the coordination of drones in the aftermath of Category 5 Cyclone Pam in Vanuatu and the 8.0 Earthquake in Nepal. Co-directed the WeRobotics workshops on humanitarian drones for UNICEF in Malawi and for WFP in Peru, Myanmar and the DR. Coordinated and evaluated cargo drone field tests in Peru and the DR. Spearheaded the Open AI Challenge with the World Bank to use AI for the automated analysis of aerial imagery and previously directed applied research on related projects including a year-long study for the Red Cross on the use of drones for disaster risk management. Served as long-time consultant to the World Bank’s UAVs for Resilience Program. Founded the Humanitarian UAV Network (UAViators) and previously developed & provided hands-on professional trainings on humanitarian drone missions to a wide range of humanitarian professionals. Also co-authored the most comprehensive report on Drones in Humanitarian Action and played a key role developing the first humanitarian drone trainings and the International Humanitarian UAV Code of Conduct. Received advanced degrees in International Affairs from The Fletcher School of Law & Diplomacy and Columbia University’s School of International and Public Affairs. Authored the book, Digital Humanitarians, which has been praised by experts from the UN, Red Cross, World Bank, USAID, DfID, Harvard, MIT, Oxford and more.

Dr. Andrew Schroeder: Over 10 years of experience in humanitarian and public health emergencies, logistics and disaster response, with extensive expertise in data-analytics, geospatial data and Geographic Information Systems (GIS). Internationally recognized leader in GIS, data science and applied epidemiology for humanitarian aid and global health. Directly engaged in relief efforts following numerous disasters including Cyclone Nargis (Myanmar), Haiti Earthquake, Japan Earthquake/Tsunami, Typhoon Haiyan (Philippines), Ebola Outbreak (Sierra Leone and Liberia), Nepal Earthquake, Hurricanes Matthew, Maria, Irma and Havey (Caribbean) and Wildfires (California). Founded the Nethope’s UAV Working Group. Co-directed the WeRobotics workshops on humanitarian drone for WFP and co-directed UNDP drones for disaster resilience project in the Maldives. On the core team of the Humanitarian UAV Network (UAViators) and previously provided hands-on professional trainings on humanitarian drone missions to a wide range of humanitarian professionals. Played a key role in developing of the International Humanitarian UAV Code of Conduct. Received advanced degrees in social analysis and public policy from New York University and the University of Michigan.

How To Register and More

The online training on Drones in Humanitarian Action will be given in June and July 2018. Please add your email address here if you are interested in joining this upcoming course:

https://werobotics.org/online-training

When the registration for the course opens on May 1st, you’ll be the first to receive an invitation to register. Certificates of completion will be provided to participants who successfully pass the training. We plan to offer this training several times a year and already plan to introduce other trainings in the future including trainings on the use of Cargo Drones in Public Health and Drones in Environmental Action. In the meantime, big thanks to our friends at TechChange for their partnership.

 

Meet the Youngest Drone Pilots in Fiji

In 2017, WeRobotics was one of more than 500 teams to compete in the MIT Solve Challenge on Youth, Skills and Workforce of the Future. Only 2% were selected as winners, and only 1% of all the applicants received dedicated funding from the Australian Department of Foreign Affairs and Trade (DFAT) and the Atlassian Foundation. Our pitch focused on building the foundations of South Pacific Flying Labs. By winning the MIT Solve Award and securing funding from DFAT, Atlassian and the University of the South Pacific (USP), Pacific Flying Labs has been able to join our global and growing network of Flying Labs; including labs in Nepal, Tanzania, Uganda, Peru, Dominican Republic and soon Brazil, Panama, Senegal and Philippines. Pacific Flying Labs is the first of our labs to have a strong focus on preparing youths for the workforce of the future.

Pacific Labs is a joint collaboration with USP and the university’s Geospatial Sciences Program, which is where the lab is based. Amrita Lal, an alum of USP’s program, leads the work of Pacific Flying Labs from Fiji. In the weeks and months following our successful pitch to the MIT Solve Challenge, Amrita along with WeRobotics, USP faculty and volunteers organized two dedicated trainings and projects with youths from Fiji. Amrita and team also organized and ran the first ever drones for good conference in the South Pacific, bringing together key stakeholders from Fiji and the region to catalyze new partnerships for future projects. The youths who participated in the trainings and projects included young women and men from local schools and local orphanages. In addition, undergraduate students from USP also participated in trainings on campus. As part of this initiative, WeRobotics transferred 2 underwater drones and 2 aerial drones to South Pacific Flying Labs along with tablets and relevant software.

The first training and project focused on the use of marine robotics to study the health of coral reefs. Participants learned how to use underwater drones safely and effectively. They captured over an hour of underwater footage from a pier off Maui Bay. The following day, at the USP GIS Lab, they teamed up into groups and analyzed the footage. The groups learned to identify the different species of fish (particularly butterfly fish) and corals visible in the footage in order to assess the health of the corals. They also learned about how marine life is impacted by human activity including climate change. They subsequently created powerpoint slides and presented their findings and recommendations to each other. After their presentations, participants were trained on how to use aerial drones safely and effectively. This training was carried out at an approved field on USP campus. The women who participated in these trainings and projects ranged from 12 to 18 years in age and all but one were from a local orphanage.

The second training and project focused on the use of aerial drones for a disaster risk reduction at an informal settlement near USP campus. The training began with a lecture on the use of drones in disaster response. This training comprised both manual flights and automated flights. The latter taught participants how to program and supervise flight plans. Following this training, the youths worked with Pacific Flying Labs to map an informal settlement. Once the imagery was collected, participants returned to the lab to process and analyze the imagery. More specifically, they teamed up into groups to identify health risks, safety concerns and vulnerabilities to natural hazards. They subsequently created powerpoint slides and presented their findings and recommendations to each other. Their findings were subsequently shard with the Red Cross. Young men (aged 17-18) and one young woman (aged 17) participated in this second training and project. Some of the youths who participated in the marine training & project also joined the aerial robotics training & project.

Once the trainings and projects were completed, Pacific Flying Labs and WeRobotics met with key stakeholders and prospective partners to explore collaboration opportunities. This included meetings with the Australian Red Cross (pictured below), Fiji Red Cross, Secretariat of Pacific Communities (SPC), World Mosquito Program (WMP) and Suva Fire Service, for example.

In addition, live demos of cargo flights were given to both to the Civil Aviation Authority and to USP students and faculty (video below). Also, initial training on marine drones was provided to USP students at the swimming pool on campus. In total, 21 USP students joined our aerial and marine drone demos and lectures.

The first phase of our work with Pacific Flying Labs culminated with a full day workshop on the use of drones for social good in the South Pacific. This was the first convening of it’s kind in the region, and brought together key stakeholders to address common challenges, identify opportunities and to create new strategic partnerships. These stakeholders included the Fiji Red Cross, Australian Red Cross, Australian Center for Field Robotics, Secretariat of the Pacific Community (SPC) and several other groups. Two youths who participated in both sets of trainings/projects opened the workshop by presenting their findings (photo below; the young woman in this photo is not one of the vulnerable youths who participated in the trainings/projects). This opening session was followed by a series of talks from local and international participants working on drones projects in the region.

During the afternoon sessions, participants discussed common challenges and new partnership opportunities. Over 30 participants from 8 different organizations participated in the workshop. Four new strategic partnership opportunities were identified  between Pacific Labs and the following organizations as a result: Red Cross, SPC, World Mosquito Program and Australian Center for Field Robotics.

Today, Fiji is being hit by a second cyclone in just as many weeks. Amrita and team are already in touch with the Fiji Red Cross and are on standby to support the disaster response and recovery work after Cyclone Keni barrels through. So instead of hiring drone companies from Australia or further afield, organizations like the Red Cross, UN and World Bank can hire young drone pilots from Fiji to support a wide range of humanitarian, development and environmental projects. Local pilots can respond more quickly than foreign pilots; plus they know the country better, speak the local language, understand local traditions and have lower overhead costs. This is just one several ways we plan to prepare youths in the region for the workforce of the future.

Testing Underwater Drones: Lessons Learned from the South Pacific

I was in Fiji earlier this month to work on a number of WeRobotics projects with our Pacific Flying Labs. One of these entailed the use of underwater drones to study the health of coral reefs near Maui Bay. We had the opportunity to test two new underwater drones for this project: the Trident by our technology partner, OpenROV and the PowerRay by the company PowerVision. Both drones only became available a just few months ago. In fact, we were the first not-for-profit organization to gain access to the Trident thanks to OpenROV’s invaluable support. These two underwater drones are now part of the Pacific Flying Labs fleet along with 2 aerial drones that we transferred to the team in Fiji. We’re planning to provide our other labs such as Tanzania Flying Labs with underwater drones as well in coming months. So what follows are some initial observations and lessons learned in the use of these underwater drones for data collection.

The first point to note is that underwater drones are tethered unlike most aerial drones (the yellow cable in the above photo). As such, their range is limited by the length of the tether. On the plus side, the drones we tested in Fiji have 2-3 hours of battery life. Another difference between underwater and aerial drones is that the former can only piloted manually while the latter can be programmed to operate autonomously. The reason is simple: GPS is not available underwater. The underwater drones we tested in the Pacific do have various features that seek to make the manual piloting easier. The PowerRay, for example, offers altitude (or rather depth) control to keep the drone more or less at the same depth while the Trident offers a stabilization feature.

Another difference between underwater and aerial drones is that the later are almost always piloted Beyond Visual Line of Site (BVLOS) contrary to most aerial drones. In other words, one loses sight of underwater drones within just a few meters of depth whereas aerial drones can be seen from several hundred meters away. This makes knowing where the drone is relative to your position rather challenging. An underwater drone pilot will have live video footage of what the drone sees right in front of them, but that can be quite limiting when operating BVLOS. On the plus side, the Trident software does include a helpful compass feature, displaying the direction that the drone is pointing in, which is a plus. But still, manually operating a drone BVLOS whether it flies or swim is particularly tricky.

Screenshot 2018-03-27 22.11.44

In addition, piloting the underwater drones to swim in straight lines (to do transects, for example) or to swim around a point of interest from different angles (to create 3D models or 360 panoramic photos) is equally challenging and takes some serious practice. And even with said practice, we found ourselves having to try and manually correct for invisible currents at various depths. Aerial drones can automatically correct for winds, thanks to GPS.

In many ways, the experience I had in piloting these underwater drones reminded me a lot of what it was like to fly the Phantom 1 when it came out in 2013. It was a very manual experience with a fixed camera. The same is true of the underwater drones. In other words, if you want the camera to capture a particular scene, you had to point the Phantom 1 towards the scene in question and adjust the altitude accordingly, often from hundreds of meters away, which meant quite a bit of guesswork (and luck) until you clocked many hours of practice. The underwater drones have fixed high definition cameras, meaning no gimbals to provide the very smooth footage that the Phantom 4 provides today. What’s more, the cameras of the underwater drones are forward facing. This means you’d need to attach a GoPro or similar camera to the bottom of the underwater drone if you wanted to capture vertical imagery to produce bathymetry maps.

Screenshot 2018-03-27 22.38.00

I have no doubt that like the Phantom’s 3 iterations since the first model came out half-a-decade ago, the future iterations of the Trident and PowerRay will make equally important strides. In the meantime, below are some initial recommendations based on our lessons learned. If we’re missing any, then please let us know!

  • Practice in a pool: We spent several days practicing in a swimming pool, i.e., a controlled environment. The upside: you can really get the hang of it without dealing with waves, currents, etc. The downside: once you hit the open Ocean, it’s a whole other ballgame.
  • You need a crew: In addition to the pilot, a spotter and a “tetherer” are needed. The purpose of the spotter is to provide the pilot with situational awareness, i.e., where the drone is in relation to the pilot and the area of interest. The tetherer is responsible for ensuring that the tether remains loose and untangled. As for the pilot, same deal as manually operating aerial drones: gamers will make for the best pilots. Seasoned divers may potentially feel more at home than others when piloting underwater drones.
  • Go slow & Transects: The underwater drones we used allow pilots to select different speeds. Stay on the slow speed when capturing footage. When photographing or filming marine life, we found that simply letting the drone drift produced some of the best results in terms of visual quality. Going to slow is also a good idea if you’re looking to run transects. The key there is to use the live video feed to identify a point in the distance and then to swim as straight as possible towards that point.
  • Image quality: You’ll want to play around with the various image settings available for the underwater drones before you go on important dives. The wrong image setting will make the resulting footage look very pale or bleached in some cases. Also, dives on cloudy days and at night tend to produce better image quality given that reflections from the sun are minimized. The underwater drones have powerful forward facing lights that help to illuminate areas of  interest.
  • Stay away from debris and sand: These can get into the motors and lead to you having a very bad day. In particular, do not “land” your drone on the ocean floor. Sand and drones don’t get along and this is true of both swimming and flying drones.
  • Visibility of screen: Just like aerial drones, direct sunlight and screens don’t work well together. Being able to see the screen on your table or smart phone to see the live video feed from your drone along with relevant operational readings such speed, altitude, etc.), is really key. But when you’re out on boat with no “dark room” to properly see the screen, then best of luck to you. We recommend taking a large, thick towel to throw over your head (another reason why a spotter is key) or using the VR Goggles provided with the PowerRay. Towels are also a good idea to thoroughly dry the drone after you take it out of the water and before you start removing the tether.
  • Wash, Rinse, Repeat: It’s really important to thoroughly rinse your drone after each day of diving, especially if you’re diving in the Ocean (i.e., salt water).

Screenshot 2018-03-27 22.33.02

Based on this experience, here’s what we’d like to see in future iterations of underwater drones:

  • Cameras: Marine scientists typically use handheld cameras with 24 megapixels. While the underwater drone cameras are HD, their megapixels is at most 12 (and less when using video). Of course, divers (the human kind) can’t stay too deep for too long whereas the underwater drones can, so yes 12 megapixels is better than nothing. But 24 is still better than 12. In addition, having a gimbal like the ones used in aerial drones to stabilize the footage and enable the pilot to point the drone in different directions without having to change the position of the drone would be a distinct advantage.
  • Manual support: More features that support the manual piloting of the drone by providing greater situational awareness—like the compass feature of the Trident—would be a huge plus. As would a better system to manage the tether.
  • Feature detection software: To automatically identify specific features that are most commonly of interest, such as identifying and counting specific species of fish and corals, for example.
  • Hybrids: There are compelling reasons to integrate underwater drones with surface water drones, i.e., to build a 2-in-1 solution. Surface water drones can be GPS enabled. As such, they can be programmed just like aerial drones. And with a downward facing camera, said surface water drones could automatically create create bathymetry maps by swimming just half a meter or less below the surface (using an extended antennae). Now add a forward facing drone and a tether and you have yourself a diving drone as well.

Many thanks to DFAT, Atlassian Foundation, Solve MIT, the University of the South Pacific and OpenROV for their invaluable support and partnership on Pacific Flying Labs. Our labs in Fiji trained young women between the ages of 12-18 years old on how to use these underwater drones to explore the marine life around them and study the health of corals. Pacific Flying Labs will continue to use these underwater drones for a range of projects in the months to come. Below is a short compilation of some of the underwater footage that our Pacific Flying Labs captured with the drones in question. Enjoy!

 

Field Testing Medical Cargo Drones in the DR

My team and I at WeRobotics recently teamed up with Emprende and other partners in the Dominican Republic (DR) to field test the delivery of cargo by drone. A more detailed and technical report is being prepared; similar to the one we published on our cargo drone field tests in the Peruvian Amazon Rainforest. In the meantime, this blog post serves as a short overview of the project, which was kindly supported by the Inter-American Development Bank (IADB).

We programmed the DR drones to transport medical supplies between local hospitals and remote villages in the mountains, several hours north of Santo Domingo. In addition to the tests, we provided local students and others with hands-on training on how to operate both multi-rotor drones and hybrid drones for cargo delivery. Building local capacity is central to our work at WeRobotics.

Transporting medicines and patient samples between hospitals (the red markers on the map above) and remote clinics (green & purple markers) in the mountains of the DR can be slow and expensive. While roads to these remote clinics do exist, they are not always paved and those that are paved are sometimes impassable due to the rivers that cross them, even during the dry season. Furthermore, while the road network in the mountains of the DR is impressively widespread, the local ownership of motorized vehicles is certainly not, nor is the availability of public transportation.

Villagers in these remote regions earn very little income and do not have the time to spend an entire day traveling to and from the nearest hospital to get their blood tested even though said hospital may “only” be 20 or 30 kilometers away. The reason this takes a day is because there is often only one “bus” (usually a truck) that goes to and from town once a day, leaving early in the morning and returning mid-afternoon. And the “bus” is obviously not free. Some patients are in pain, and simply unable to just “hop” on the back of a truck driving over bumpy roads for an hour or more under the sun. As such, doctors working at these hospitals and clinics are keen to explore other ways to expedite the collection and testing of patient samples and distribution of essential medicines.

In some cases, remote villages will have a small clinic. But these small clinics often lack a continuous supply of medicines. This is particularly problematic for patients who need to take specific medicines on a regular basis. What’s more, sending patient samples that require a specialized laboratory for testing purposes and then receiving results of this testing is also a cumbersome task that becomes complicated. These logistical challenges can potentially be alleviated by introducing the use of cargo drones.

Emprende invited WeRobotics to build local capacity and evaluate the use of drones for the collection and delivery of patient samples and medicines, and to field test two drones in the process. This local training and cargo flights took place over a 10-day period in two different mountainous regions of the DR. The training and flight operations were carried out in partnership with Emprende and other stakeholders. The purpose of these tests was to better understand the opportunities and limitations of using affordable solutions for the rapid delivery of essential supplies in the DR. As such, the field tests sought to better understand the failure points and failure rates of the technology while developing streamlined workflows to enable the safe and regular delivery of essential items in the DR. Understanding failure points and rates is essential to developing a preventive maintenance strategy. The latter serves to increase the reliability and longevity of aircraft. In addition, understanding the limitations of affordable solutions in relevant social, geographical and environmental contexts was one of the overarching goals of the field tests.

The field tests were carried out using 2 types of general-use drones that were adapted for cargo delivery: DJI’s M600 hexacopter drone and Vertical Technologies’ DeltaQuad, a new VTOL (Vertical Takeoff and Landing) fixed wing drone, also called a QuadPlane configuration. A total of 31 complete flights were logged (not counting shorter test flights). The types of cargo transported included items of up to 2kg including water, sample tubes, some medicines and even avocados and energy bars for testing purposes. The distances covered by the cargo drones ranged between 5 kilometers and 12 kilometers, with an altitude difference of up to 250 meters in altitude between takeoff and landing. Three technical failures were experienced and exhaustively investigated. These are detailed in the upcoming technical report.

The growing healthcare needs in the DR coupled with expensive and slow cargo delivery options makes it clear that alternative solutions are needed. Our recent trainings and field tests in the DR confirm that cargo drones can be part of the solution. That said, more field research needs to be carried out to identify the most compelling and sustainable delivery routes in the DR. This research is currently being conducted by Emprende in partnership with local universities.

Cargo Drones Deliver in the Amazon Rainforest

Cross-posted from WeRobotics

The Amazon is home to thousands of local indigenous communities spread across very remote areas. As a result, these sparsely populated communities rarely have reliable access to essential medicines and public health services. Local doctors in the region of Contamana report an average of 45 snakebites per month and no rapid access to antivenom, for example. We recently traveled to the rainforest to learn more about these challenges, and to explore whether cargo drones (UAVs) could realistically be used to overcome some of these problems in a sustainable manner. We’re excited to share the results of our latest field tests in this new report (PDF); Spanish version here. For high-resolution photos of the field tests, please follow this link. Videos below.

F8. Frankie 8

Our cargo drone flights were carried out in collaboration with the Peruvian Ministry of Health and local doctors. The field-tests themselves were coordinated by our local WeRobotics lab: Peru Flying Labs. Anti-venom was flown from the town of Contamana to the more remote village of Pampa Hermosa about 40 kilometers away. A regular boat (canoe) takes up to 6 hours to complete the journey. Our drone took around 35 minutes.

At night, we flew the drone back to Contamana with blood samples. While cargo drone projects typically use very expensive technology, WeRobotics prefers to use affordable and locally repairable solutions instead. Behind the scenes footage of the actual cargo drone flown in the Amazon is available in the video below.

Thanks to the success of our first drone deliveries, we’ve been invited back by the Ministry of Health and local doctors to carry out additional field tests. This explains why our Peru Flying Labs team is back in the Amazon this very week to carry out additional drone deliveries. We’re also gearing up to carry out deliveries across a distance of more than 100km using affordable drones. In parallel, we’re also working on this innovative Zika-control project with our Peru Flying Labs; drawing on lessons learned from our work in the Amazon Rainforest.

We’ll be giving a free Webinar presentation on all our efforts in Peru on Wednesday, February 22nd at 11am New York time / 4pm London. Please join our email-list for more information.

PeruDec16-0525-IMG_8379 (1)

To support our local Flying Labs teams in Peru, Nepal and/or Tanzania with donations, kindly contact Peter Mosur (peter@werobotics.org). For media inquiries on the Amazon Rainforest project and WeRobotics, please contact Dr. Patrick Meier (patrick@werobotics). Ministry of Health officials and other local partners are also available for interviews.


About WeRobotics

The mission of WeRobotics is to scale the positive impact of social good projects through the use of appropriate robotics solutions. We do this by creating robotics labs (Flying Labs) that transfer professional skills and robotics solutions locally. We have Flying Labs in Asia (Nepal), Africa (Tanzania), and South America (Peru). WeRobotics is funded by the Rockefeller Foundation, which enabled the recent project in the Amazon rain-forest with our Peru Flying Labs.

First Ever Cargo Drone Deliveries in Amazon Rainforest

Cross-posted from WeRobotics

The Amazon is home to thousands of local indigenous communities spread across very remote areas. As a result, these sparsely populated communities rarely have reliable access to essential medicines and public health services. Local doctors in the region report an average of 45 snakebites per month and no rapid access to anti-venom meds, for example. We recently traveled to the rainforest to learn more about these challenges and to explore whether cargo drones (UAVs) could realistically be used to overcome some of these challenges in a sustainable manner. We’re excited to share that our cargo drone flights in the Amazon rainforest were a big success!

pic-1

This unique and successful pilot project was a big team effort including our Peru Flying Labs Coordinator Juan Bergelund, UAV del Peru and the Peruvian Ministry of Health along with some of Peru’s leading public health experts. We carried out both day and night autonomous flights between local health hub Contamana and the remote village of Pampa Hermosa around 40 kilometers away. The drones delivered life-saving anti-venom medicines as well as blood samples. The flights took around 35 minutes compared to traditional riverboat transportation, which can take up to 6 hours.

pic-2
We have already been asked by multiple local authorities in the region to carry out additional flights in coming months. These flights will test the aerial delivery of medical supplies across 100+ kilometers. A detailed review of our recent flight tests will be released in early January along with high definition pictures and videos. Our Peru Flying Labs will also be working on this Zika reduction project in Peru using cargo drones. For media enquiries, please contact Dr. Patrick Meier (patrick@werobotics) and Juan Bergelund (juan@werobotics). Ministry of Health officials and other partners are also available for interviews.

pic-3

In the meantime, we wish to sincerely thank all our outstanding partners and colleagues in Peru for their invaluable support and partnership over the past two weeks. We are very excited to continue our good work together in coming months and years.


About WeRobotics

The mission of WeRobotics is to scale the positive impact of social good projects through the use of appropriate robotics solutions. We do this by creating robotics labs (Flying Labs) that transfer professional skills and robotics solutions locally. We have Flying Labs in Asia (Nepal), Africa (Tanzania) and South America (Peru). WeRobotics is funded by the Rockefeller Foundation, which enabled the recent project in the Amazon rainforest with our Peru Flying Labs.