Tag Archives: Disaster

Using Waze, Uber, AirBnB and SeeClickFix for Disaster Response

After the Category 5 Tornado in Oklahoma, map editors at Waze used the service to route drivers around the damage. While Uber increased their car service fares during Hurricane Sandy, they could have modified their App to encourage the shared use of Uber cars to fill unused seats. This would have taken some work, but AirBnB did modify their platform overnight to let over 1,400 kindhearted New Yorkers offer free housing to victims of the hurricane. SeeClick fix was used also to report over 800 issues in just 24 hours after Sandy made landfall. These included reports on the precise location of power outages, flooding, downed trees, downed electric lines, and other storm damage. Following the Boston Marathon Bombing, SeeClick fix was used to quickly find emergency housing for those affected by the tragedy.

Disaster-affected populations have always been the real first responders. Paid emergency response professionals cannot be everywhere at the same time, but the crowd is always there. Disasters are collective experiences; and today, disaster-affected crowds are increasingly “digital crowds” as well—that is, both a source and consumer of that digital information. In other words, they are also the first digital responders. Thanks to connection technologies like Waze, Uber, AirBnB and SeeClickFix, disaster affected communities can self-organize more quickly than ever before since these new technologies drastically reduce the cost and time necessary to self-organize. And because resilience is a function of a community’s ability to self-organize, these new technologies can also render disaster-prone populations more resilient by fostering social capital, thus enabling them to bounce back more quickly after a crisis.

When we’re affected by disasters, we tend to use the tools that we are most familiar with, i.e. those we use on a daily basis when there is no disaster. That’s why we often see so many Facebook updates, Instagram pictures, tweets, YouTube videos, etc., posted during a disaster. The same holds true for services like Waze and AirBnB, for example. So I’m thrilled to see more examples of these platforms used as humanitarian technologies and equally heartened to know that the companies behind these tools are starting to play a more active role during disasters, thus helping people help themselves. Each of these platforms have the potential to become hyper-local match.com’s for disaster response. Facilitating this kind of mutual-aid not only builds social capital, which is critical to resilience, it also shifts the burden and pressure off the shoulders of paid responders who are often overwhelmed during major disasters.

In sum, these useful everyday technologies also serve to crowdsource and democratize disaster response. Do you know of other examples? Other everyday smartphone apps and web-based apps that get used for disaster response? If so, I’d love to know. Feel free to post your examples in the comments section below. Thanks!

bio

Could CrowdOptic Be Used For Disaster Response?

Crowds—rather than sole individuals—are increasingly bearing witness to disasters large and small. Instagram users, for example, snapped 800,000 #Sandy pictures during the hurricane last year. One way to make sense of this vast volume and velocity of multimedia content—Big Data—during disasters is with PhotoSynth, as blogged here. Another perhaps more sophisticated approach would be to use CrowdOptic, which automatically zeros in on the specific location that eyewitnesses are looking at when using their smartphones to take pictures or recording videos.

Instagram-Hurricane-Sandy

How does it work? CrowdOptic simply triangulates line-of-sight intersections using sensory metadata from pictures and videos taken using a smartphone. The basic approach is depicted in the figure below. The areas of intersection is called a focal cluster. CrowdOptic automatically identifies the location of these clusters.

Cluster

“Once a crowd’s point of focus is determined, any content generated by that point of focus is automatically authenticated, and a relative significance is assigned based on CrowdOptic’s focal data attributes […].” These include: (1) Number of Viewers; (2) Location of Focus; (3) Distance to Epicenter; (4) Cluster Timestamp, Duration; and (5) Cluster Creation, Dissipation Speed.” CrowdOptic can also be used on live streams and archival images & videos. Once a cluster is identified, the best images/videos pointing to this cluster are automatically selected.

Clearly, all this could have important applications for disaster response and information forensics. My colleagues and I recently collected over 12,000 Instagram pictures and more than 5,000 YouTube videos posted to Twitter during the first 48 hours of the Tornado in Oklahoma. These could be uploaded to CrowdOptic for cluster identification. Any focal cluster with several viewers would almost certainly be authentic, particularly if the time-stamps are similar. These clusters could then be tagged by digital humanitarian volunteers based on whether they depict evidence of disaster damage. Indeed, we could have tested out CrowdOptic during in the disaster response efforts we carried out for the United Nations following the devastating Philippines Typhoon. Perhaps CrowdOptic could facilitate rapid damage assessments in the future. Of course, the value of CrowdOptic ultimately depends on the volume of geotagged images and videos shared on social media and the Web.

https://youtube.com/watch?v=2gt4lgq4ZW8%3Fversion%3D3%26hl%3Den_US

I once wrote a blog post entitled, “Wag the Dog, or How Falsifying Crowdsourced Data Can Be a Pain.” While an image or video could certainly be falsified, trying to fake several focal clusters of multimedia content with dozens of viewers each would probably require the equivalent organization capacity of a small movie-production or commercial. So I’m in touch with the CrowdOptic team to explore the possibility of carrying out a proof of concept based on the multimedia data we’ve collected following the Oklahoma Tornados. Stay tuned!

bio

Data Mining Wikipedia in Real Time for Disaster Response

My colleague Fernando Diaz has continued working on an interesting Wikipedia project since he first discussed the idea with me last year. Since Wikipedia is increasingly used to crowdsource live reports on breaking news such as sudden-onset humanitarian crisis and disasters, why not mine these pages for structured information relevant to humanitarian response professionals?

wikipedia-logo

In computing-speak, Sequential Update Summarization is a task that generates useful, new and timely sentence-length updates about a developing event such as a disaster. In contrast, Value Tracking tracks the value of important event-related attributes such as fatalities and financial impact. Fernando and his colleagues will be using both approaches to mine and analyze Wikipedia pages in real time. Other attributes worth tracking include injuries, number of displaced individuals, infrastructure damage and perhaps disease outbreaks. Pictures of the disaster uploaded to a given Wikipedia page may also be of interest to humanitarians, along with meta-data such as the number of edits made to a page per minute or hour and the number of unique editors.

Fernando and his colleagues have recently launched this tech challenge to apply these two advanced computing techniques to disaster response based on crowdsourced Wikipedia articles. The challenge is part of the Text Retrieval Conference (TREC), which is being held in Maryland this November. As part of this applied research and prototyping challenge, Fernando et al. plan to use the resulting summarization and value tracking from Wikipedia to verify related  crisis information shared on social media. Needless to say, I’m really excited about the potential. So Fernando and I are exploring ways to ensure that the results of this challenge are appropriately transferred to the humanitarian community. Stay tuned for updates. 

bio

 

See also: Web App Tracks Breaking News Using Wikipedia Edits [Link]

Results: Analyzing 2 Million Disaster Tweets from Oklahoma Tornado

Thanks to the excellent work carried out by my colleagues Hemant Purohit and Professor Amit Sheth, we were able to collect 2.7 million tweets posted in the aftermath of the Category 4 Tornado that devastated Moore, Oklahoma. Hemant, who recently spent half-a-year with us at QCRI, kindly took the lead on carrying out some preliminary analysis of the disaster data. He sampled 2.1 million tweets posted during the first 48 hours for the analysis below.

oklahoma-tornado-20

About 7% of these tweets (~146,000 tweets) were related to donations of resources and services such as money, shelter, food, clothing, medical supplies and volunteer assistance. Many of the donations-related tweets were informative in nature, e.g.: “As President Obama said this morning, if you want to help the people of Moore, visit [link]”. Approximately 1.3% of the tweets (about 30,000 tweets) referred to the provision of financial assistance to the disaster-affected population. Just over 400 unique tweets sought non-monetary donations, such as “please help get the word out, we are accepting kid clothes to send to the lil angels in Oklahoma.Drop off.

Exactly 152 unique tweets related to offers of help were posted within the first 48 hours of the Tornado. The vast majority of these were asking how to get involved in helping others affected by the disaster. For example: “Anyone know how to get involved to help the tornado victims in Oklahoma??#tornado #oklahomacity” and “I want to donate to the Oklahoma cause shoes clothes even food if I can.” These two offers of help are actually automatically “matchable”, making the notion of a “Match.com” for disaster response a distinct possibility. Indeed, Hemant has been working with my team and I at QCRI to develop algorithms (classifiers) that not only identify relevant needs/offers from Twitter automatically but also suggests matches as a result.

Some readers may be suprised to learn that “only” several hundred unique tweets (out of 2+million) were related to needs/offers. The first point to keep in mind is that social media complements rather than replaces traditional information sources. All of us working in this space fully recognize that we are looking for the equivalent of needles in a haystack. But these “needles” may contain real-time, life-saving information. Second, a significant number of disaster tweets are retweets. This is not a negative, Twitter is particularly useful for rapid information dissemination during crises. Third, while there were “only” 152 unique tweets offering help, this still represents over 130 Twitter users who were actively seeking ways to help pro bono within 48 hours of the disaster. Plus, they are automatically identifiable and directly contactable. So these volunteers could also be recruited as digital humanitarian volunteers for MicroMappers, for example. Fourth, the number of Twitter users continues to skyrocket. In 2011, Twitter had 100 million monthly active users. This figure doubled in 2012. Fifth, as I’ve explained here, if disaster responders want to increase the number of relevant disaster tweets, they need to create demand for them. Enlightened leadership and policy is necessary. This brings me to point six: we were “only” able to collect ~2 million tweets but suspect that as many as 10 million were posted during the first 48 hours. So humanitarian organizations along with their partners need access to the Twitter Firehose. Hence my lobbying for Big Data Philanthropy.

Finally, needs/offers are hardly the only type of useful information available on Twitter during crises, which is why we developed several automatic classifiers to extract data on: caution and advice, infrastructure damage, casualties and injuries, missing people and eyewitness accounts. In the near future, when our AIDR platform is ready, colleagues from the American Red Cross, FEMA, UN, etc., will be able create their own classifiers on the fly to automatically collect information that is directly relevant to them and their relief operations. AIDR is spearheaded by QCRI colleague ChaTo and myself.

For now though, we simply emailed relevant geo-tagged and time-stamped data on needs/offers to colleagues at the American Red Cross who had requested this information. We also shared data related to gas leaks with colleagues at FEMA and ESRI, as per their request. The entire process was particularly insightful for Hemant and I, so we plan to follow up with these responders to learn how we can best support them again until AIDR becomes operational. In the meantime, check out the Twitris+ platform developed by Amit, Hemant and team at Kno.e.sis

bio

See also: Analysis of Multimedia Shared on Twitter After Tornado [Link

How Online Gamers Can Support Disaster Response

IRL

FACT: Over half-a-million pictures were shared on Instagram and more than 20 million tweets posted during Hurricane Sandy. The year before, over 100,000 tweets per minute were posted following the Japan Earthquake and Tsunami. Disaster-affected communities are now more likely than ever to be on social media, which dramatically multiplies the amount of user-generated crisis information posted during disasters. Welcome to Big Data—Big Crisis Data.

Humanitarian organizations and emergency management responders are completely unprepared to deal with this volume and velocity of crisis information. Why is this a problem? Because social media can save lives. Recent empirical studies have shown that an important percentage of social media reports include valuable, informative & actionable content for disaster response. Looking for those reports, however, is like searching for needles in a haystack. Finding the most urgent tweets in an information stack of over 20 million tweets (in real time) is indeed a major challenge.

FACT: More than half a billion people worldwide play computer and video games for at least an hour a day. This amounts to over 3.5 billion hours per week. In the US alone, gamers spend over 4 million hours per week online. The average young person will spend 10,000 hours of gaming by the age of 21. These numbers are rising daily. In early 2013, “World of Warcraft” reached 9.6 million subscribers worldwide, a population larger than Sweden. The online game “League of Legends” has over 12 million unique users every day while more than 20 million users log on to Xbox Live every day.

What if these gamers had been invited to search through the information haystack of 20 million tweets posted during Hurricane Sandy? Lets assume gamers were asked to tag which tweets were urgent without ever leaving their games. This simple 20-second task would directly support disaster responders like the American Red Cross. But the Digital Humanitarian Network (DHN) would have taken more than 100 hours or close to 5 days, assuming all their volunteers were working 24/7 with no breaks. In contrast, the 4 million gamers playing WoW (excluding China) would only need  90 seconds to do this. The 12 million gamers on League of Legends would have taken just 30 seconds.

While some of the numbers proposed above may seem unrealistic, there is absolutely no denying that drawing on this vast untapped resource would significantly accelerate the processing of crisis information during major disasters. In other words, gamers worldwide can play a huge role in supporting disaster response operations. And they want to: gamers playing “World of Warcraft” raised close to $2 million in donations to support relief operations following the Japan Earthquake. They also raised another $2.3 million for victims of Superstorm Sandy. Gamers can easily donate their time as well. This is why my colleague Peter Mosur and I are launching the Internet Response League (IRL). Check out our dedicated website to learn more and join the cause.

bio 

 

Project Loon: Google Blimps for Disaster Response (Updated)

A blimp is a floating airship that does not have any internal supporting framework or keel. The airship is typically filled with helium and is controlled remotely using steerable fans. Projet Loon is a Google initiative to launch a fleet of Blimps to extend Internet/wifi access across Africa and Asia. Some believe that “these high-flying networks would spend their days floating over areas outside of major cities where Internet access is either scarce or simply nonexistent.” Small-scale prototypes are reportedly being piloted in South Africa “where a base station is broadcasting signals to wireless access boxes in high schools over several kilometres.” The US military has been using similar technology for years.

Blimp

Google notes that the technology is “well-suited to provide low cost connectivity to rural communities with poor telecommunications infrastructure, and for expanding coverage of wireless broadband in densely populated urban areas.” Might Google Blimps also be used by Google’s Crisis Response Team in the future? Indeed, Google Blimps could be used to provide Internet access to disaster-affected communities. The blimps could also be used to capture very high-resolution aerial imagery for damage assessment purposes. Simply adding a digital camera to said blimps would do the trick. In fact, they could simply take the fourth-generation cameras used for Google Street View and mount them on the blimps to create Google Sky View. As always, however, these innovations are fraught with privacy and data protection issues. Also, the use of UAVs and balloons for disaster response has been discussed for years already.

bio

Over 2 Million Tweets from Oklahoma Tornado Automatically Processed (Updated)

Update: We have now processed a total of 2 million tweets (up from 1 million).

My colleague Hemant Purohit at QCRI has been working with us on automatically extracting needs and offers of help posted on Twitter during disasters. When the 2-mile wide, Category 4 Tornado struck Moore, Oklahoma, he immediately began to collect relevant tweets about the Tornado’s impact and applied the algorithms he developed at QCRI to extract needs and offers of help.

tornado_ok

As long-time readers of iRevolution will know, this is an approach I’ve been advocating for and blogging about for years, including the auto-matching of needs and offers. These algorithms (classifiers) will also be made available as part of our Artificial Intelligence for Disaster Response (AIDR) platform. In the meantime, we have contacted our colleagues at the American Red Cross’s Digital Operations Center (DigiOps) to offer the results of the processed data, i.e., 1,000+ tweets requesting & offering help. If you are an established organization engaged in relief efforts following the Tornado, please feel free to get in touch with us (patrick@iRevolution.net) so we can make the data available to you. 

Bio

How Crowdsourced Disaster Response in China Threatens the Government

In 2010, Russian volunteers used social media and a live crisis map to crowdsource their own disaster relief efforts as massive forest fires ravaged the country. These efforts were seen by many as both more effective and visible than the government’s response. In 2011, Egyptian volunteers used social media to crowdsource their own humanitarian convoy to provide relief to Libyans affected by the fighting. In 2012, Iranians used social media to crowdsource and coordinate grassroots disaster relief operations following a series of earthquakes in the north of the country. Just weeks earlier, volunteers in Beijing crowd-sourced a crisis map of the massive flooding in the city. That map was immediately available and far more useful than the government’s crisis map. In early 2013, a magnitude 7  earthquake struck Southwest China, killing close to 200 and injuring more than 13,000. The response, which was also crowdsourced by volunteers using social media and mobile phones, actually posed a threat to the Chinese Government.

chinaquake

“Wang Xiaochang sprang into action minutes after a deadly earthquake jolted this lush region of Sichuan Province […]. Logging on to China’s most popular social media sites, he posted requests for people to join him in aiding the survivors. By that evening, he had fielded 480 calls” (1). While the government had declared the narrow mountain roads to the disaster-affected area blocked to unauthorized rescue vehicles, Wang and hitchhiked his way through with more than a dozen other volunteers. “Their ability to coordinate — and, in some instances, outsmart a government intent on keeping them away — were enhanced by Sina Weibo, the Twitter-like microblog that did not exist in 2008 but now has more than 500 million users” (2). And so, “While the military cleared roads and repaired electrical lines, the volunteers carried food, water and tents to ruined villages and comforted survivors of the temblor […]” (3). Said Wang: “The government is in charge of the big picture stuff, but we’re doing the work they can’t do” (4).

In response to this same earthquake, another volunteer, Li Chengpeng, “turned to his seven million Weibo followers and quickly organized a team of volunteers. They traveled to the disaster zone on motorcycles, by pedicab and on foot so as not to clog roads, soliciting donations via microblog along the way. What he found was a government-directed relief effort sometimes hampered by bureaucracy and geographic isolation. Two days after the quake, Mr. Li’s team delivered 498 tents, 1,250 blankets and 100 tarps — all donated — to Wuxing, where government supplies had yet to arrive. The next day, they hiked to four other villages, handing out water, cooking oil and tents. Although he acknowledges the government’s importance during such disasters, Mr. Li contends that grass-roots activism is just as vital. ‘You can’t ask an NGO to blow up half a mountain to clear roads and you can’t ask an army platoon to ask a middle-aged woman whether she needs sanitary napkins, he wrote in a recent post” (5).

chinaquake2

As I’ve blogged in the past (here and here, for example), using social media to crowdsourced grassroots disaster response efforts serves to create social capital and strengthen collective action. This explains why the Chinese government (and others) faced a “groundswell of social activism” that it feared could “turn into government opposition” following the earthquake (6). So the Communist Party tried to turn the disaster into a “rallying cry for political solidarity. ‘The more difficult the circumstance, the more we should unite under the banner of the party,’ the state-run newspaper People’s Daily declared […], praising the leadership’s response to the earthquake” (7).

This did not quell the rise in online activism, however, which has “forced the government to adapt. Recently, People’s Daily announced that three volunteers had been picked to supervise the Red Cross spending in the earthquake zone and to publish their findings on Weibo. Yet on the ground, the government is hewing to the old playbook. According to local residents, red propaganda banners began appearing on highway overpasses and on town fences even before water and food arrived. ‘Disasters have no heart, but people do,’ some read. Others proclaimed: ‘Learn from the heroes who came here to help the ones struck by disaster’ (8). Meanwhile, the Central Propaganda Department issued a directive to Chinese newspapers and websites “forbidding them to carry negative news, analysis or commentary about the earthquake” (9). Nevertheless, “Analysts say the legions of volunteers and aid workers that descended on Sichuan threatened the government’s carefully constructed narrative about the earthquake. Indeed, some Chinese suspect such fears were at least partly behind official efforts to discourage altruistic citizens from coming to the region” (10).

Aided by social media and mobile phones, grassroots disaster response efforts present a new and more poignant “Dictator’s Dilemma” for repressive regimes. The original Dictator’s Dilemma refers to an authoritarian government’s competing interest in using information communication technology by expanding access to said technology while seeking to control the democratizing influences of this technology. In contrast, the “Dictator’s Disaster Lemma” refers to a repressive regime confronted with effectively networked humanitarian response at the grassroots level, which improves collective action and activism in political contexts as well. But said regime cannot prevent people from helping each other during natural disasters as this could backfire against the regime.

bio

See also:

 •  How Civil Disobedience Improves Crowdsourced Disaster Response [Link]

Web App Tracks Breaking News Using Wikipedia Edits

A colleague of mine at Google recently shared a new and very interesting Web App that tracks breaking news events by monitoring Wikipedia edits in real-time. The App, Wikipedia Live Monitor, alerts users to breaking news based on the frequency of edits to certain articles. Almost every significant news event has a Wikipedia page that gets updated in near real-time and thus acts as a single, powerful cluster for tacking an evolving crisis.

Wikipedia Live Monitor

Social media, in contrast, is far more distributed, which makes it more difficult to track. In addition, social media is highly prone to false positives. These, however, are almost immediately corrected on Wikipedia thanks to dedicated editors. Wikipedia Live Monitor currently works across several dozen languages and also “cross-checks edits with social media updates on Twitter, Google Plus and Facebook to help users get a better sense of what is trending” (1).

I’m really excited to explore the use of this Live Monitor for crisis response and possible integration with some of the humanitarian technology platforms that my colleagues and I at QCRI are developing. For example, the Monitor could be used to supplement crisis information collected via social media using the Artificial Intelligence for Disaster Response (AIDR) platform. In addition, the Wikipedia Monitor could also be used to triangulate reports posted to our Verily platform, which leverages time-critical crowdsourcing techniques to verify user-generated content posted on social media during disasters.

bio

GDACSmobile: Disaster Responders Turn to Bounded Crowdsourcing

GDACS, the Global Disaster Alert and Coordination System, sparked my interest in technology and disaster response when it was first launched back in 2004, which is why I’ve referred to GDACS in multiple blog posts since. This near real-time, multi-hazard monitoring platform is a joint initiative between the UN’s Office for the Coordination of Humanitarian Affairs (OCHA) and the European Commission (EC). GDACS serves to consolidate and improve the dissemination of crisis-related information including rapid mathematical analyses of expected disaster impact. The resulting risk information is distributed via Web and auto-mated email, fax and SMS alerts.

Screen Shot 2013-03-25 at 3.13.35 AM

I recently had the pleasure of connecting with two new colleagues, Daniel Link and Adam Widera, who are researchers at the University of Muenster’s European Research Center for Information Systems (ERCIS). Daniel and Adam have been working on GDACSmobile, a smartphone app that was initially developed to extend the reach of the GDACS portal. This project originates from a student project supervised by Daniel, Adam along with the Chair of the Center Bernd Hellingrath in cooperation with both Tom de Groeve from the Joint Research Center (JRC) and Minu Kumar Limbu, who is now with UNICEF Kenya.

GDACSmobile is intended for use by disaster responders and the general public, allowing for a combined crowdsourcing and “bounded crowdsourcing” approach to data collection and curation. This bounded approach was a deliberate design feature for GDACSmobile from the outset. I coined the term “bounded crowd-sourcing” four years ago (see this blog post from 2009). The “bounded crowd-sourcing” approach uses “snowball sampling” to grow a crowd of trusted reporters for the collection of crisis information. For example, one invites 5 (or more) trusted local reports to collect relevant information and subsequently ask each of these to invite 5 additional reporters who they fully trust; And so on, and so forth. I’m thrilled to see this term applied in practical applications such GDACSmobile. For more on this approach, please see these blog posts.

Bildschirmfoto 2013-03-25 um 13.47.21

GDACSmobile, which operates on all major mobile smartphones, uses a delibera-tely minimalist approach to situation reporting and can be used to collect info-rmation (via text & image) while offline. The collected data is then automatically transmitted when a connection becomes available. Users can also view & filter data via map view and in list form. Daniel and Adam are considering the addition of an icon-based data-entry interface instead of text-based data-entry since the latter is more cumbersome & time-consuming.

Bildschirmfoto 2013-03-24 um 22.15.28

Meanwhile, the server side of GDACSmobile facilitates administrative tasks such as the curation of data submitted by app users and shared on Twitter. Other social media platforms may be added in the future, such as Flickr, to retrieve relevant pictures from disaster-affected areas (similar to GeoFeedia). The server-side moderation feature is used to ensure high data quality standards. But the ERCIS researchers are also open to computational solutions, which is one reason GDACSmobile is not a ‘data island’ and why other systems for computational analysis, microtasking etc., can be used to process the same dataset. The server also “offers a variety of JSON services to allow ‘foreign’ systems to access the data. […] SQL queries can also be used with admin access to the server, and it would be very possible to export tables to spreadsheets […].” 

I very much look forward to following GDACSmobile’s progress. Since Daniel and Adam have designed their app to be open and are also themselves open to con-sidering computational solutions, I have already begun to discuss with them our AIDR project (Artificial Intelligence for Disaster Response) project at the Qatar Computing Research Institute (QCRI). I believe that making the ADIR-GDACS interoperable would make a whole lot of sense. Until then, if you’re going to this year’s International Conference on Information Systems for Crisis Response and Management (ISCRAM 2013) in May, then be sure to participate in the workshop (PDF) that Daniel and Adam are running there. The side-event will present the state of the art and future trends of rapid assessment tools to stimulate a conver-sation on current solutions and developments in mobile tech-nologies for post-disaster data analytics and situational awareness. My colleague Dr. Imran Muhammad from QCRI will also be there to present findings from our crisis computing research, so I highly recommend connecting with him.

Bio