Testing Underwater Drones: Lessons Learned from the South Pacific

I was in Fiji earlier this month to work on a number of WeRobotics projects with our Pacific Flying Labs. One of these entailed the use of underwater drones to study the health of coral reefs near Maui Bay. We had the opportunity to test two new underwater drones for this project: the Trident by our technology partner, OpenROV and the PowerRay by the company PowerVision. Both drones only became available a just few months ago. In fact, we were the first not-for-profit organization to gain access to the Trident thanks to OpenROV’s invaluable support. These two underwater drones are now part of the Pacific Flying Labs fleet along with 2 aerial drones that we transferred to the team in Fiji. We’re planning to provide our other labs such as Tanzania Flying Labs with underwater drones as well in coming months. So what follows are some initial observations and lessons learned in the use of these underwater drones for data collection.

The first point to note is that underwater drones are tethered unlike most aerial drones (the yellow cable in the above photo). As such, their range is limited by the length of the tether. On the plus side, the drones we tested in Fiji have 2-3 hours of battery life. Another difference between underwater and aerial drones is that the former can only piloted manually while the latter can be programmed to operate autonomously. The reason is simple: GPS is not available underwater. The underwater drones we tested in the Pacific do have various features that seek to make the manual piloting easier. The PowerRay, for example, offers altitude (or rather depth) control to keep the drone more or less at the same depth while the Trident offers a stabilization feature.

Another difference between underwater and aerial drones is that the later are almost always piloted Beyond Visual Line of Site (BVLOS) contrary to most aerial drones. In other words, one loses sight of underwater drones within just a few meters of depth whereas aerial drones can be seen from several hundred meters away. This makes knowing where the drone is relative to your position rather challenging. An underwater drone pilot will have live video footage of what the drone sees right in front of them, but that can be quite limiting when operating BVLOS. On the plus side, the Trident software does include a helpful compass feature, displaying the direction that the drone is pointing in, which is a plus. But still, manually operating a drone BVLOS whether it flies or swim is particularly tricky.

Screenshot 2018-03-27 22.11.44

In addition, piloting the underwater drones to swim in straight lines (to do transects, for example) or to swim around a point of interest from different angles (to create 3D models or 360 panoramic photos) is equally challenging and takes some serious practice. And even with said practice, we found ourselves having to try and manually correct for invisible currents at various depths. Aerial drones can automatically correct for winds, thanks to GPS.

In many ways, the experience I had in piloting these underwater drones reminded me a lot of what it was like to fly the Phantom 1 when it came out in 2013. It was a very manual experience with a fixed camera. The same is true of the underwater drones. In other words, if you want the camera to capture a particular scene, you had to point the Phantom 1 towards the scene in question and adjust the altitude accordingly, often from hundreds of meters away, which meant quite a bit of guesswork (and luck) until you clocked many hours of practice. The underwater drones have fixed high definition cameras, meaning no gimbals to provide the very smooth footage that the Phantom 4 provides today. What’s more, the cameras of the underwater drones are forward facing. This means you’d need to attach a GoPro or similar camera to the bottom of the underwater drone if you wanted to capture vertical imagery to produce bathymetry maps.

Screenshot 2018-03-27 22.38.00

I have no doubt that like the Phantom’s 3 iterations since the first model came out half-a-decade ago, the future iterations of the Trident and PowerRay will make equally important strides. In the meantime, below are some initial recommendations based on our lessons learned. If we’re missing any, then please let us know!

  • Practice in a pool: We spent several days practicing in a swimming pool, i.e., a controlled environment. The upside: you can really get the hang of it without dealing with waves, currents, etc. The downside: once you hit the open Ocean, it’s a whole other ballgame.
  • You need a crew: In addition to the pilot, a spotter and a “tetherer” are needed. The purpose of the spotter is to provide the pilot with situational awareness, i.e., where the drone is in relation to the pilot and the area of interest. The tetherer is responsible for ensuring that the tether remains loose and untangled. As for the pilot, same deal as manually operating aerial drones: gamers will make for the best pilots. Seasoned divers may potentially feel more at home than others when piloting underwater drones.
  • Go slow & Transects: The underwater drones we used allow pilots to select different speeds. Stay on the slow speed when capturing footage. When photographing or filming marine life, we found that simply letting the drone drift produced some of the best results in terms of visual quality. Going to slow is also a good idea if you’re looking to run transects. The key there is to use the live video feed to identify a point in the distance and then to swim as straight as possible towards that point.
  • Image quality: You’ll want to play around with the various image settings available for the underwater drones before you go on important dives. The wrong image setting will make the resulting footage look very pale or bleached in some cases. Also, dives on cloudy days and at night tend to produce better image quality given that reflections from the sun are minimized. The underwater drones have powerful forward facing lights that help to illuminate areas of  interest.
  • Stay away from debris and sand: These can get into the motors and lead to you having a very bad day. In particular, do not “land” your drone on the ocean floor. Sand and drones don’t get along and this is true of both swimming and flying drones.
  • Visibility of screen: Just like aerial drones, direct sunlight and screens don’t work well together. Being able to see the screen on your table or smart phone to see the live video feed from your drone along with relevant operational readings such speed, altitude, etc.), is really key. But when you’re out on boat with no “dark room” to properly see the screen, then best of luck to you. We recommend taking a large, thick towel to throw over your head (another reason why a spotter is key) or using the VR Goggles provided with the PowerRay. Towels are also a good idea to thoroughly dry the drone after you take it out of the water and before you start removing the tether.
  • Wash, Rinse, Repeat: It’s really important to thoroughly rinse your drone after each day of diving, especially if you’re diving in the Ocean (i.e., salt water).

Screenshot 2018-03-27 22.33.02

Based on this experience, here’s what we’d like to see in future iterations of underwater drones:

  • Cameras: Marine scientists typically use handheld cameras with 24 megapixels. While the underwater drone cameras are HD, their megapixels is at most 12 (and less when using video). Of course, divers (the human kind) can’t stay too deep for too long whereas the underwater drones can, so yes 12 megapixels is better than nothing. But 24 is still better than 12. In addition, having a gimbal like the ones used in aerial drones to stabilize the footage and enable the pilot to point the drone in different directions without having to change the position of the drone would be a distinct advantage.
  • Manual support: More features that support the manual piloting of the drone by providing greater situational awareness—like the compass feature of the Trident—would be a huge plus. As would a better system to manage the tether.
  • Feature detection software: To automatically identify specific features that are most commonly of interest, such as identifying and counting specific species of fish and corals, for example.
  • Hybrids: There are compelling reasons to integrate underwater drones with surface water drones, i.e., to build a 2-in-1 solution. Surface water drones can be GPS enabled. As such, they can be programmed just like aerial drones. And with a downward facing camera, said surface water drones could automatically create create bathymetry maps by swimming just half a meter or less below the surface (using an extended antennae). Now add a forward facing drone and a tether and you have yourself a diving drone as well.

Many thanks to DFAT, Atlassian Foundation, Solve MIT, the University of the South Pacific and OpenROV for their invaluable support and partnership on Pacific Flying Labs. Our labs in Fiji trained young women between the ages of 12-18 years old on how to use these underwater drones to explore the marine life around them and study the health of corals. Pacific Flying Labs will continue to use these underwater drones for a range of projects in the months to come. Below is a short compilation of some of the underwater footage that our Pacific Flying Labs captured with the drones in question. Enjoy!

 

Field Testing Medical Cargo Drones in the DR

My team and I at WeRobotics recently teamed up with Emprende and other partners in the Dominican Republic (DR) to field test the delivery of cargo by drone. A more detailed and technical report is being prepared; similar to the one we published on our cargo drone field tests in the Peruvian Amazon Rainforest. In the meantime, this blog post serves as a short overview of the project, which was kindly supported by the Inter-American Development Bank (IADB).

We programmed the DR drones to transport medical supplies between local hospitals and remote villages in the mountains, several hours north of Santo Domingo. In addition to the tests, we provided local students and others with hands-on training on how to operate both multi-rotor drones and hybrid drones for cargo delivery. Building local capacity is central to our work at WeRobotics.

Transporting medicines and patient samples between hospitals (the red markers on the map above) and remote clinics (green & purple markers) in the mountains of the DR can be slow and expensive. While roads to these remote clinics do exist, they are not always paved and those that are paved are sometimes impassable due to the rivers that cross them, even during the dry season. Furthermore, while the road network in the mountains of the DR is impressively widespread, the local ownership of motorized vehicles is certainly not, nor is the availability of public transportation.

Villagers in these remote regions earn very little income and do not have the time to spend an entire day traveling to and from the nearest hospital to get their blood tested even though said hospital may “only” be 20 or 30 kilometers away. The reason this takes a day is because there is often only one “bus” (usually a truck) that goes to and from town once a day, leaving early in the morning and returning mid-afternoon. And the “bus” is obviously not free. Some patients are in pain, and simply unable to just “hop” on the back of a truck driving over bumpy roads for an hour or more under the sun. As such, doctors working at these hospitals and clinics are keen to explore other ways to expedite the collection and testing of patient samples and distribution of essential medicines.

In some cases, remote villages will have a small clinic. But these small clinics often lack a continuous supply of medicines. This is particularly problematic for patients who need to take specific medicines on a regular basis. What’s more, sending patient samples that require a specialized laboratory for testing purposes and then receiving results of this testing is also a cumbersome task that becomes complicated. These logistical challenges can potentially be alleviated by introducing the use of cargo drones.

Emprende invited WeRobotics to build local capacity and evaluate the use of drones for the collection and delivery of patient samples and medicines, and to field test two drones in the process. This local training and cargo flights took place over a 10-day period in two different mountainous regions of the DR. The training and flight operations were carried out in partnership with Emprende and other stakeholders. The purpose of these tests was to better understand the opportunities and limitations of using affordable solutions for the rapid delivery of essential supplies in the DR. As such, the field tests sought to better understand the failure points and failure rates of the technology while developing streamlined workflows to enable the safe and regular delivery of essential items in the DR. Understanding failure points and rates is essential to developing a preventive maintenance strategy. The latter serves to increase the reliability and longevity of aircraft. In addition, understanding the limitations of affordable solutions in relevant social, geographical and environmental contexts was one of the overarching goals of the field tests.

The field tests were carried out using 2 types of general-use drones that were adapted for cargo delivery: DJI’s M600 hexacopter drone and Vertical Technologies’ DeltaQuad, a new VTOL (Vertical Takeoff and Landing) fixed wing drone, also called a QuadPlane configuration. A total of 31 complete flights were logged (not counting shorter test flights). The types of cargo transported included items of up to 2kg including water, sample tubes, some medicines and even avocados and energy bars for testing purposes. The distances covered by the cargo drones ranged between 5 kilometers and 12 kilometers, with an altitude difference of up to 250 meters in altitude between takeoff and landing. Three technical failures were experienced and exhaustively investigated. These are detailed in the upcoming technical report.

The growing healthcare needs in the DR coupled with expensive and slow cargo delivery options makes it clear that alternative solutions are needed. Our recent trainings and field tests in the DR confirm that cargo drones can be part of the solution. That said, more field research needs to be carried out to identify the most compelling and sustainable delivery routes in the DR. This research is currently being conducted by Emprende in partnership with local universities.

Empowering Youths in Fiji to Explore their Islands with Aerial and Marine Robotics

Fiji was largely spared the wrath of Cyclone Gita, but the high-end category 4 Cyclone devastated the islands of Tonga nearby. As typically happens, the drone companies that international organizations are now hiring to carry out aerial surveys of the  damage come from Australia and/or New Zealand. These foreign companies usually arrive weeks after the disaster. They also charge high consulting fees, and rarely speak the local language. In addition, they typically stay a week or two at most, which means aerial imagery is not available during the recovery and reconstruction phase. Lastly, foreign companies rarely if ever have time to build local capacity, let alone the know-how to sustainably transfer drone technology to local partners.

Our mission at WeRobotics is to localize appropriate robotics technology by placing drone solutions directly in the hands of local professionals. We do this through our growing network of Flying Labs—local action labs run entirely by local teams who we train and equip. This doesn’t mean that foreign drone companies don’t have an important role to play in the aftermath of major disasters. But it does mean that national and international organizations should absolutely prioritize hiring local drone pilots and imagery analysts. This helps to build local capacity and create local jobs. It also enables local participation in data collection and avoids delays as well as possible biases in the collection of said data. In sum, when the need for aerial data cannot be met locally, then yes, national and international organizations should absolutely turn to foreign companies to collect aerial data. But if these organizations ignore or displace the local capacity that does exist, then this is really problematic. Said organizations should invest in building the capacity of local youths, not sideline them.

This explains why our growing network of Flying Labs around the world are deeply committed to training the youths in their countries on how to use drones safely, responsibly and effectively for social good projects. Today’s youths are the drone pilots of the immediate future. This is why our Pacific Flying Labs is teaming up with a local girl’s orphanage and other youths in Fiji to map informal settlements for a disaster risk reduction project. The youths will learn how to use drones safely, responsibly and effectively. Our Pacific Labs will also teach them how to use Ground Control Points (GCPs) and how to process the resulting imagery to create high quality maps as well as 3D models. In addition, they will try out Hangar and Survae to create additional information products. In sum, the purpose of this project is to introduce local youths to the basics of drone mapping so they can participate in the data collection process and learn the skills they need to participate in the  workforce of the 21st century.

Once the aerial data is processed, the resulting maps will be printed out on large banners. Youths will team up into different groups to analyze these maps. They will first identify major areas of concern. For example, they will analyze housing infrastructure, drainage and environmental issues, disaster risks and the long term impact of climate change on these informal settlements. Equally importantly, youths will propose concrete solutions for each of the concerns they’ve identified. They will then present their project and findings to local, national and international organizations at conference organized by Pacific Flying Labs and the University of the South Pacific (USP) on March 16th.

After the workshop, the Coordinator of Pacific Flying Labs, Amrita Lal, plans to head to Tonga where she will team up with a Tongan classmate of hers from USP to carry out aerial surveys to support the recovery and reconstruction efforts. Amrita is so committed to this that she has decided to skip her undergraduate graduation ceremony to be in Tonga. This will make her the one and only female drone pilot from the region to be involved in the response to Cylcone Gita. Her classmate, who recently graduated from USP, will be the only Tongan drone pilot involved in the response to Gita. He will hold on to one of the drones from Pacific Flying Labs so that he can continue mapping as needed. In the future, we hope that Amrita and other drone pilots from Fiji, Tonga, Vanuatu and elsewhere will be the ones hired by national and international organizations to support humanitarian efforts in their countries.

Our Pacific Flying Labs will also be using the Trident, an underwater drone from OpenROV, one of our Technology Partners. Pacific Labs will train girls from an orphanage in Fiji and other local youths. This will enable youths to learn the skills they need to thrive in the workforce of the 21st Century. It will also give them the opportunity to explore the marine life around their island from a completely new perspective.

The marine robotics project will be led by our Pacific Flying Labs Coordinator, Ms. Amrita Lal. Local youths will be using underwater drones to explore and evaluate the health of coral reefs. The location selected has sea-grass, bare sand and corals in all directions. Participating youths will have been trained the day before at a swimming pool at the University of the South Pacific (USP) on how to operate underwater drones to capture live video footage and photographs. They will identify and count different species of fish—particularly Butterflyfish since these serve as an important indicator of coral reef health. They will also seek to identify and count Parrotfish, Surgeonfish, Tangs, Sea Urchins, Molluscs and Clams. In addition, youths will document the presence or absence of coral bleaching and diseases. While some initial visual analysis will be carried out on site with the live footage, the bulk of the analysis will take place at USP’s GIS Lab the following day.

Dr. Stuart Kininmont, a Senior Lecturer at USP’s School of Marine Studies, will be joining our marine robotics expedition. Dr. Stuart teaches Coral Reef Ecology, Marine Spatial Planning and Marine Geology and Sedimentology. In addition, two Marine Science Teaching Assistants will join the expedition to facilitate the data collection. Dr. Stuart will also teach youths on how to identify and count relevant marine life species when we’re back at the USP lab. Youths will be given out pre-made charts with photos and descriptions of relevant species and will study the recorded footage frame by frame to document and analyze the health of the coral reefs.

After carrying out their visual analyses of the footage, we’ll work with participating youths to help them produce formal presentations of the project along with their findings. They’ll learn how to create a create a professional slide deck and how to give a compelling presentation. They will rehearse their presentations in front of each other in order to get further feedback. These youths will then give their talks at the opening of the Pacific Flying Labs Conference that week. This conference will bring relevant local, national and regional stakeholders to create a road map for Pacific Labs. Training youths across the region on how to use appropriate robotics for social good is a key priority of the labs.

We’re also planning to explore what other types of drone-derived information products might also be useful for marine scientists and biologists. Colleagues at the Scripps Institution of Oceanography, for example, use diver-operated underwater cameras to take images of coral reefs which they process into high-definition 3D models. These models informs their “high-level ecological questions (community & landscape ecology: community structure & composition, spatial patterning, coral condition, structural complexity, etc) for peer-reviewed publication.” The models also “provide baseline assessment data for marine managers and communities.” We’re keen to explore whether the high-definition 4K cameras on the underwater drones can provide sufficiently high-resolution data to create high-definition 3D models usable for advanced scientific research.

We’re excited to work on this project with Amrita and local youth; a project made possible thanks our close partnership with USP’s GIS Lab and the generous support of the Australian Department of Foreign Affairs and Trade (DFAT), Atlassian Foundation and USP. In addition, we want to thank our Technology Partner OpenROV for generously donating a Trident to our South Pacific Flying Labs.

Many thanks to USP for their close partnership on South Pacific Flying Labs and to the Australian Department of Foreign Affairs and Trade (DFAT) and the Atlassian Foundation for their generous support of Pacific Labs.

How Mosquitos are Hitching a Ride on Drones to Reduce Zika

I had the distinct honor of serving on the expert panel of judges for the prestigious International Drones and Robotics for Good Awards in Dubai for 2 years. It was there that I first came across the path-breaking work of the Insect Pest Control Laboratory (IPCL) of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (NAFA). Their proposed solution: to fight Zika and other mosquito-borne diseases by using drones. I was impressed with their innovative approach and pleased that their pitch was recognized as such by my fellow judges in Dubai: the FAO/IAEA team was selected as one of 10 semi-finalists from over 1,000 competing teams.

I therefore reached out to IPCL when USAID launched their Grand Challenge on combating Zika and related diseases. I was keen to explore whether WeRobotics could help translate IPCL’s pitch in Dubai into reality. To be sure, combining FAO/IAEA’s world renowned expertise in pest control with our demonstrated expertise in the application of robotics for positive social impact could really make a difference. Thankfully, USAID was equally excited and kindly awarded us with this grant to design, prototype and field-test a mosquito release mechanism specifically for drones.

Mosquitoes are one of the world’s biggest killers, responsible for spreading deadly diseases including Zika, dengue and malaria. Among the many ways being researched to combat this threat is the Sterile Insect Technique (SIT) – flooding the environment with non-biting, sterile male mosquitoes, which after mating produce sterile eggs and a reduction in the local mosquito population. SIT is a complementary tool in pest-control efforts. This form of insect birth control has been used successfully for decades to combat insects, including the Mediterranean fruit fly, the screwworm and the tsetse fly, and is now being adapted to help fight disease-transmitting mosquitos. One of the challenges for the potential use of this technique is efficiently spreading millions of sterile mosquitoes – this is where drones come in. So for the past year we have been working together with IPCL on a drone-based mosquito dispersion mechanism, as part of USAID’s Grand Challenge on combating Zika and related diseases.

You can read here about the motivations behind using mosquito-releasing drones for vector control. As we’ve recently received some media coverage on our joint project (e.g., BBC, IEEE Spectrum, TechExplore, DigitalTrends, Interna-tional Business Times and Internet of Business) we wanted to share the latest developments on our prototype.

While release mechanisms exist for fruit flies (in particular for manned aircraft), mosquitoes are alas far more fragile. Developing a release mechanism for mosquitoes is a lot more difficult, presenting a number of design challenges ranging from the shape of the mosquito storage unit and its nozzle, to the type of ejection unit used to physically disperse them. Quality of the mosquitoes as they exit the mechanism is paramount; the mosquitoes must be able to find mates, and any damage to their wings or body can prevent them from successfully competing with non-sterile males.

In addition, the mosquitoes need to be kept between 4-10 °C to keep them in a sleep-like state so that they don’t get “active” and hurt each other when placed into the small release mechanism. So the challenge here is to maintain the cold-chain as efficiently as possible; not only during the drone flight, but also during transportation to the takeoff site and setup of the drone platform.

Our immediate direct goal is to release 50,000-100,000 mosquitoes over one square kilometer in a single drone flight. While a range of ejection solutions were considered, we’re currently using a mechanism based on a simple rotating cylinder with small slots that transfers mosquitoes in small batches. This mechanism was developed for other fragile insects within the ERC REVOLINC project (PCT/EP2017/059832). To chill the mosquitoes we’re using a passive cooling technique based on phase change materials.

The first step in validating the system is lab tests. Our partners at IPCL have reared hundreds of thousands of mosquitoes (photo above) and passed them through the device in various configurations, measuring their resistance to the mechanical stress of the mechanism, wind resistance and various other details. The release mechanism was extensively tested with real mosquitoes (Aedes aegypti) at IPCL in Vienna with further tests scheduled for early December.

Lab tests help us characterize our mechanism in controlled conditions, but the real proof of the mechanism’s efficacy must be done in the mosquito’s natural habitat. We are thus finalizing our plans to field test the release mechanism with live mosquitoes in Latin America in early 2018. IPCL will be using mosquito traps during these tests to evaluate the survival and dispersal of mosquitoes from the mechanism, comparing it to ground-based release and giving us clues on the impact of aerially-released sterile mosquitoes on the overall mosquito population.

Stay tuned for the results of our field tests in coming months!

Entire Fleet of Cargo Drones Tested in the Amazon Rainforest

Cross-posed from WeRobotics.

In June 2017, WeRobotics teamed up with the Peruvian Ministry of Health and Becton, Dickinson and Company (BD) to field test a fleet of affordable cargo drones in the Amazon Rainforest. BD is a leading, multi-billion dollar medical technology company. The majority of the flights were carried out by our Peru Flying Labs and UAV del Peru. During the course of two weeks, we field-tested a dozen drones including fixed-wings and hybrid drones; carrying a variety of medical payloads (medicines, diagnostic tests, blood samples) across a range of distances (stretching from 2km to 126km). These comprehensive field tests comprised over 40 flights and built on the initial tests we carried out with the Peruvian Ministry of Health in December 2016 and February 2017. Our detailed report on these recent flight tests is available here (PDF). High-resolution photos can be found here and live tweets of the field tests with additional photos and videos are available here.

In addition to testing the impact of drone flights on blood samples, BD carried out a number of finding mission to better understand the full range of health care challenges that local communities face in this region of the Amazon. The interviews also sought to provide a better understanding of the actual status of the health care systems already running in the region. While in Contamana, for example, the BD team met a woman who had arrived the night before from a remote community following serious complications in childbirth. Since drugs for treatment weren’t available in her community, she had to travel for 5 hours (3 hours walking and 2 hours by boat) while enduring postpartum hemorrhaging, to reach the hospital in Contamana. The use of a drone would have allowed emergency supplies to be delivered within 30-60 minutes directly to the remote community where the woman gave birth. This is just one of multiple findings documented by BD during the field tests; findings that indicate a clear unmet need for transporting medical supplies and, almost more importantly, patient specimens to allow for appropriate diagnosis.

At one point during our field tests, the main airport in the region, Pucallpa Airport, had to close and ground all manned aircraft for half-a-day due to dense fog, a common occurrence in the Amazon. If Contamana had been out of emergency supplies when the woman reached the hospital, it is doubtful that she or her baby would have lived unless a plane could be dispatched to deliver the supplies. What was so striking about all manned aircraft being grounded due to the fog is that it had no effect on the cargo drone flights; the drones could keep flying while a dozen manned aircraft lay idle at the airport. The drones had the entire regional airspace to themselves. Naturally, we still followed all drone regulations as required by the Peruvian Aviation Authorities.

One of the main goals of the recent field tests was to evaluate the performance and reliability of more affordable drones. Fact is, cargo drones that cost over USD 10,000 are unlikely to be appropriate for certain use-cases and contexts in the Amazon Rainforest. This not only due to budgetary constraints and the need for a viable business model but also because more expensive drones tend to be more sophisticated, thus requiring more training and often more infrastructure. The majority of drones used during the field tests were locally assembled in Lima with our Peru Flying Labs and tested there for two weeks before taking flight over the Amazon. This local capacity building strategy is central to all our Flying Labs. Furthermore, it is typically easier to repair affordable drones locally. Affordable drones also tend to be easier and cheaper to transport. In the photo above, two such drones are tied to the back of a motor taxi. Finally, there is little need for very high frequency flights in the Amazon, which means that more expensive drones and sophisticated drones may not be necessary.

Working with affordable drones obviously comes with tradeoffs, however. One of the goals of the field tests was to better understand these tradeoffs in the context of the Amazon Rainforest—not only technical tradeoffs but tradeoffs in process as well, e.g., preventive maintenance. In total, 93% of our cargo drone flights were successful with 3 flights failing shortly after takeoff, posing no physical risk to anyone. It is important to note that the root cause of two of these failures may have been linked to preventive maintenance issues (process) rather than a technical problem. The third failure was in some ways to be expected since it was specifically an experimental takeoff meant to experiment with certain parameters. In other words it was a controlled failure, as noted in our report. Telemetry, weather data and flight statistics are also available in the report, which is the only detailed, transparent and publicly available report on cargo drone trials to date.

To learn more about our lessons learned from the recent field tests in the Amazon Rainforest and our future cargo delivery projects, be sure to join our webinar next month, November 15th, at 12pm New York Time. Information on how to sign up will be made available via our email list and via social media (follow us on Twitter and Facebook). If you’d like to join future WeRobotics projects, be sure to join our roster.

In the meantime, we sincerely thank the Peruvian Ministry of Health as well as regional and local doctors and clinics in Pucallpa, Masisea, Tiruntan and Contamana for their partnership and invaluable support. We also express our very kind thanks to the Peruvian Civil Aviation Authorities (DGAC) and the airport authorities in Pucallpa for granting us permissions for the field tests. Sincerest thanks to Becton, Dickinson and Company (BD) for their partnership and support for the field tests and to the whole team at UAV del Peru for making these field tests possible. Big thanks as well to all the volunteers at Peru Flying Labs for the countless hours they put into the field tests. We’d also like to thank our technology partner, Oriol Lopez, and the missionaries in Pucallpa who lent us their airfield in San Jose.

For questions/comments and media enquiries, please contact Dr. Patrick Meier (patrick@werobotics.org) and Dr. Adam Curry (adam.curry@bd.com).

Join the conversation!
FacebookTwitterGoogle Group

 

Digital Humanitarians in Space: Planet Launches Rapid Response Team

Planet has an unparalleled constellation of satellites in orbit. In addition to their current constellation of 130 micro-satellites, they have 5 RapidEye satellites and the 7 SkySat satellites (recently acquired from Google). What’s more, 48 new micro-satellites were just launched into orbit this July, bringing the total number of Planet satellites to 190. And once the 48 satellites begin imaging, Planet will have global, daily coverage of the entire Earth, covering over 150 million square kilometers every day. Never before has the humanitarian community had access to such a vast amount of timely satellite imagery.

As described in my book, Digital Humanitarians, this vast amount of new data adds to the rapidly growing Big Data challenge that humanitarian organizations are facing. As such, what humanitarians need is not just data philanthropy—i.e., free and rapid access to relevant data—they also need insight philanthropy. This is where Planet’s new Rapid Response Team comes in.

Planet just launched this new digital volunteer program in partnership with the Digital Humanitarian Network to help ensure that Planet’s data and insights get to the right people at the right time to accelerate and improve humanitarian response. After major disasters hit, members of the Rapid Response Team can provide the latest satellite images available and/or geospatial analysis directly to field-based aid organizations.

So if you’re an established humanitarian group and need rapid access to satellite imagery and/or analysis after major disasters, simply activate the Digital Humanitarian Network. You can request satellite images of disaster affected areas on a daily basis as well as before/after analysis (sliders) of those areas as shown above. This is an exciting and generous new resource being made available to the international humanitarian community by Planet, so please do take advantage.

In the meantime, if you have any questions or suggestions, please feel free to get in touch by email or via the comments section below. I serve as an advisor to Planet and am keen to make the Rapid Response initiative as useful as possible to humanitarian organizations.

How to Defeat Zika with Flying Robots

Cross-posted from WeRobotics

Mosquitos kill more humans every year than any other animal on the planet and conventional methods to reduce mosquito-borne illnesses haven’t worked as well as many hoped. So we’ve been hard at work since receiving this USAID grant six months ago to reduce Zika incidence and related threats to public health.

WP1

Our partners at the joint FAO/IAEA Insect Pest Control Lab in Vienna, Austria have been working to perfect the Sterile Insect Technique (SIT) in order to sterilize and release male mosquitos in Zika hotspots. Releasing millions of said male mosquitos increases competition for female mosquitos, making it more difficult for non-sterilized males to find a mate.

WP3

We learned last year at a USAID Co-Ideation Workshop that this technique can reduce the overall mosquito population in a given area by 90%. The way this works is by releasing millions of sterilized mosquitos using cars, helicopters and/or planes, or even backpacks.

Our approach seeks to complement and extend (not replace) these existing delivery methods. The challenge with manned aircraft is that they are expensive to operate and maintain. They may also not be able to target areas with great accuracy given the altitudes they have to fly at.

WP4

Cars are less expensive, but they rely on ground infrastructure. This can be a challenge in some corners of the world when roads become unusable due to rainy seasons or natural disasters. What’s more, not everyone lives on or even close to a road.

WP5

Our IAEA colleagues thus envision establishing small mosquito breeding labs in strategic regions in order to release sterilized male mosquitos and reduce the overall mosquito population in select hotspots. The idea would be to use both ground and aerial release methods with cars and flying robots.

WP6

The real technical challenge here, besides breeding millions of sterilized mosquitos, is actually not the flying robot (drone/UAV) but rather the engineering that needs to go into developing a release mechanism that attaches to the flying robot. In fact, we’re more interested in developing a release mechanism that will work with any number of flying robots, rather than having a mechanism work with one and only one drone/UAV. Aerial robotics is evolving quickly and it is inevitable that drones/UAVs available in 6-12 months will have greater range and payload capacity that today. So we don’t want to lock our release mechanism into a platform that may be obsolete by the end of the year. So for now we just using a DJI Matrice M600 Pro so we can focus on engineering the release mechanism.

Screenshot 2017-06-09 13.24.22

Developing this release mechanism is anything but trivial. Ironically, mosquitos are particularly fragile. So if they get damaged while being released, game over. What’s more, in order to pack one million mosquitos (about 2.5kg in weight) into a particularly confined space, they need to be chilled or else they’ll get into a brawl and damage each other, i.e., game over. (Recall the last time you were stuck in the middle seat in Economy class on a transcontinental flight). This means that the release mechanism has to include a reliable cooling system. But wait, there’s more. We also need to control the rate of release, i.e., to control how many thousands mosquitos are released per unit of space and time in order to drop said mosquitos in a targeted and homogenous manner. Adding to the challenge is the fact that mosquitos need time to unfreeze during free fall so they can fly away and do their thing, ie, before they hit the ground or else, game over.

We’ve already started testing our early prototype using “mosquito substitutes” like cumin and anise as the latter came recommended by mosquito experts. Next month, we’ll be at the FAO/IAEA Pest Control Lab in Vienna to test the release mechanism indoors using dead and live mosquitos. We’ll then have 3 months to develop a second version of the prototype before heading to Latin America to field test the release mechanism with our Peru Flying Labs. One of these tests will involve the the integration of the flying robot and the release mechanism in terms of both hardware and software. In other words, we’ll be testing the integrated system over different types of terrain and weather conditions in Peru specifically.

WP7

We are already developing the mission control app pictured above to program our autonomous flights. The app will let the operator decide how many sterilized mosquitos to release at any given time and location. Our field tests in Peru will also seek to identify the optimal flight parameters for the targeted and homogenous delivery of sterilized mosquitos. For example, what is the optimal speed and altitude of the flying robot to ensure that the mosquitos are released over the intended areas?

Our Peru Flying Labs has already developed expertise and capacity in cargo drone delivery, most recently in projects in the Amazon Rainforest with the Ministry of Health (more here). This new Zika reduction project –and in particularly the upcoming field tests — will enable us to further build our Peruvian team’s capacity in cargo space. The plan is for Peru Flying Labs to operate the flying robots and release mechanisms as need once we have a more robust version of the release mechanism. The vision here is to have a fleet of flying robots at our Flying Labs equipped with release mechanisms in order to collectively release millions of sterilized mosquitos over relatively large areas. And because our Peruvian colleagues are local, they can rapidly deploy as needed.

For now, though, our WeRobotics Engineering Team (below) is busy developing the prototype out of our Zurich office. So if you happen to be passing through, definitely let us know, we’d love to show you the latest and give you a demo. We’ll also be reaching out the Technical University of Peru who are members of our Peru Flying Labs to engage with their engineers as we get closer to the field tests in country.

As an aside, our USAID colleagues recently encouraged us to consider an entirely separate, follow up project totally independently of IAEA whereby we’d be giving rides to Wolbachia treated mosquitos. Wolbachia is the name of bacteria that is used to infect male mosquitos so they can’t reproduce. IAEA does not focus on Wolbachia at all, but other USAID grantees do. Point being, the release mechanism could have multiple applications. For example, instead of releasing mosquitos, the mechanism could scatter seeds. Sound far-fetched? Think again.